scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Microdroplet evaporation with a forced pinned contact line.

19 Aug 2014-Langmuir (American Chemical Society)-Vol. 30, Iss: 34, pp 10548-10555
TL;DR: In this article, an experimental and numerical investigation of water microdroplet evaporation on heated, laser patterned polymer substrates is reported, where a computer-controlled syringe pump feeds water through a 200 μm diameter fluid channel within the heated polymer substrate.
Abstract: Experimental and numerical investigations of water microdroplet evaporation on heated, laser patterned polymer substrates are reported. The study is focused on both (i) controlling a droplet’s contact line dynamics during evaporation to identifying how the contact line influences evaporative heat transfer and (ii) validating numerical simulations with experimental data. Droplets are formed on the polymer surface using a bottom-up methodology, where a computer-controlled syringe pump feeds water through a 200 μm diameter fluid channel within the heated polymer substrate. This methodology facilitates precise control of the droplet’s growth rate, size, and inlet temperature. In addition to this microchannel supply line, the substrate surfaces are laser patterned with a moatlike trench around the fluid-channel outlet, adding additional control of the droplet’s contact line motion, area, and contact angle. In comparison to evaporation on a nonpatterned polymer surface, the laser patterned trench increases cont...
Citations
More filters
Journal ArticleDOI
TL;DR: This contribution is aimed at providing meaningful information on how to select water-repellent substrates to solve the scientific and practical issues, which can also stimulate new thinking for the development of antiwetting interfacial materials.
Abstract: Bioinspired water-repellent materials offer a wealth of opportunities to solve scientific and technological issues. Lotus-leaf and pitcher plants represent two types of antiwetting surfaces, i.e., superhydrophobic and lubricant-infused “slippery” surfaces. Here we investigate the functions and applications of those two types of interfacial materials. The superhydrophobic surface was fabricated on the basis of a hydrophobic fumed silica nanoparticle/poly(dimethylsiloxane) composite layer, and the lubricant-infused “slippery” surface was prepared on the basis of silicone oil infusion. The fabrication, characteristics, and functions of both substrates were studied, including the wettability, transparency, adhesive force, dynamic droplet impact, antifogging, self-cleaning ability, etc. The advantages and disadvantages of the surfaces were briefly discussed, indicating the most suitable applications of the antiwetting materials. This contribution is aimed at providing meaningful information on how to select wa...

202 citations

Journal ArticleDOI
31 Mar 2015-Langmuir
TL;DR: The manner in which the extreme modes of droplet evaporation become indistinguishable on strongly hydrophobic substrates is described and the so-called "2/3 power law" is used to extrapolate the lifetimes of droplets evaporating in the constant contact radius mode as well as in the Constant contact angle mode.
Abstract: The manner in which the extreme modes of droplet evaporation (namely, the constant contact radius and the constant contact angle modes) become indistinguishable on strongly hydrophobic substrates is described. Simple asymptotic expressions are obtained which provide good approximations to the evolutions of the contact radius, the contact angle, and the volume of droplets evaporating in the extreme modes for a wide range of hydrophobic substrates. As a consequence, on strongly hydrophobic substrates it is appropriate to use the so-called “2/3 power law” to extrapolate the lifetimes of droplets evaporating in the constant contact radius mode as well as in the constant contact angle mode.

91 citations

Journal ArticleDOI
TL;DR: The contact angle hysteresis determines not only the deviation of the contact angle from equilibrium, but also the adhesion force between the droplet and the surface, a droplet state (Wenzel or Cassie-Baxter), and the wetting anisotropy of local areas on laser-textured alloy.

44 citations

Journal ArticleDOI
TL;DR: An approximate diffusion model for the drying characteristics is proposed, which predicts the evaporation of the drops in agreement with experiment and numerical simulation results, and provides an advanced understanding of theevaporation process of ouzo (multi-component) drops.
Abstract: Evaporation of multi-component drops is crucial to various technologies and has numerous potential applications because of its ubiquity in nature. Superamphiphobic surfaces, which are both superhydrophobic and superoleophobic, can give a low wettability not only for water drops but also for oil drops. In this paper, we experimentally, numerically and theoretically investigate the evaporation process of millimetric sessile ouzo drops (a transparent mixture of water, ethanol, and trans-anethole) with low wettability on a superamphiphobic surface. The evaporation-triggered ouzo effect, i.e. the spontaneous emulsification of oil microdroplets below a specific ethanol concentration, preferentially occurs at the apex of the drop due to the evaporation flux distribution and volatility difference between water and ethanol. This observation is also reproduced by numerical simulations. The volume decrease of the ouzo drop is characterized by two distinct slopes. The initial steep slope is dominantly caused by the evaporation of ethanol, followed by the slower evaporation of water. At later stages, thanks to Marangoni forces the oil wraps around the drop and an oil shell forms. We propose an approximate diffusion model for the drying characteristics, which predicts the evaporation of the drops in agreement with experiment and numerical simulation results. This work provides an advanced understanding of the evaporation process of ouzo (multi-component) drops.

44 citations

Journal ArticleDOI
TL;DR: In this article, a direct experimental observation of convective flow inside rapidly evaporating droplets has been carried out, and the possible causes of such a flow are also explored, as well as possible causes for the quiescence of the surrounding gas around the evaporation.
Abstract: Studies on the evaporation of suspended microlitre droplets under atmospheric conditions have observed faster evaporation rates than the theoretical diffusion-driven rate, especially for rapidly evaporating droplets such as ethanol. Convective flow inside rapidly evaporating droplets has also been reported in the literature. The surrounding gas around the evaporating droplet has, however, been considered to be quiescent in many studies, the validity of which can be questioned. In the present work, we try to answer this question by direct experimental observation of the flow. The possible causes of such a flow are also explored.

42 citations

References
More filters
01 Jan 2011

6,700 citations

Journal ArticleDOI
23 Oct 1997-Nature
TL;DR: In this article, the authors ascribe the characteristic pattern of the deposition to a form of capillary flow in which pinning of the contact line of the drying drop ensures that liquid evaporating from the edge is replenished by liquid from the interior.
Abstract: When a spilled drop of coffee dries on a solid surface, it leaves a dense, ring-like deposit along the perimeter (Fig 1a) The coffee—initially dispersed over the entire drop—becomes concentrated into a tiny fraction of it Such ring deposits are common wherever drops containing dispersed solids evaporate on a surface, and they influence processes such as printing, washing and coating1,2,3,4,5 Ring deposits also provide a potential means to write or deposit a fine pattern onto a surface Here we ascribe the characteristic pattern of the deposition to a form of capillary flow in which pinning of the contact line of the drying drop ensures that liquid evaporating from the edge is replenished by liquid from the interior The resulting outward flow can carry virtually all the dispersed material to the edge This mechanism predicts a distinctive power-law growth of the ring mass with time—a law independent of the particular substrate, carrier fluid or deposited solids We have verified this law by microscopic observations of colloidal fluids

5,553 citations

Journal ArticleDOI
TL;DR: In this article, it has been shown that for each combination of a solid and a fluid, there is an appropriate angle of contact between the surfaces of the fluid, exposed to the air, and to the solid.
Abstract: It has already been asserted, by Mr. Monge and others, that the phenomena of capillary tubes are referable to the cohesive attraction of the superficial particles only of the fluids employed, and that the surfaces must consequently be formed into curves of the nature of lintearias, which are supposed to be the results of a uniform tension of a surface, resisting the pressure of a fluid, either uniform, or varying according to a given law. Segner, who appears to have been the first that maintained a similar opinion, has shown in what manner the principle may be deduced from the doctrine of attraction, but his demonstration is complicated, and not perfectly satisfactory; and in applying the law to the forms of drops, he has neglected to consider the very material effects of the double curvature, which is evidently the cause of the want of a perfect coincidence of some of his experiments with his theory. Since the time of Segner, little has been done in investigating accurately and in detail the various consequences of the principle. It will perhaps be most agreeable to the experimental philosopher, although less consistent with the strict course of logical argument, to proceed in the first place to the comparison of this theory with the phenomena, and to inquire afterwards for its foundation in the ultimate properties of matter. But it is necessary to premise one observation, which appears to be new, and which is equally consistent with theory and with experiment; that is, that for each combination of a solid and a fluid, there is an appropriate angle of contact between the surfaces of the fluid, exposed to the air, and to the solid. This angle, for glass and water, and in all cases where a solid is perfectly wetted by a fluid, is evanescent: for glass and mercury, it is about 140°, in common temperatures, and when the mercury is moderately clean.

5,149 citations

Book
01 Jan 1989
TL;DR: The first law of thermodynamics -closed systems, control volumes, and the second law of entropy -a measure of disorder energy -are the properties of pure substances of high-speed fluid flow as mentioned in this paper.
Abstract: Basic concepts of thermodynamics properties of pure substances the first law of thermodynamics - closed systems, control volumes the second law of thermodynamics entropy - a measure of disorder energy - a measure of work potential gas power cycles vapour and combined power cycles refrigeration cycles thermodynamics property gas mixtures gas vapour mixtures and air conditioning chemical reactions chemical and phase equilibrium thermodynamics of high-speed fluid flow property tables and charts (SI units, English units) about the software

4,495 citations