scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies

TL;DR: Microfabrication techniques for silicon, metal, and biodegradable polymer microneedle arrays having solid and hollow bores with tapered and beveled tips and feature sizes from 1 to 1,000 μm allowed flow of microliter quantities into skin in vivo, including microinjection of insulin to reduce blood glucose levels in diabetic rats.
Abstract: Arrays of micrometer-scale needles could be used to deliver drugs, proteins, and particles across skin in a minimally invasive manner. We therefore developed microfabrication techniques for silicon, metal, and biodegradable polymer microneedle arrays having solid and hollow bores with tapered and beveled tips and feature sizes from 1 to 1,000 μm. When solid microneedles were used, skin permeability was increased in vitro by orders of magnitude for macromolecules and particles up to 50 nm in radius. Intracellular delivery of molecules into viable cells was also achieved with high efficiency. Hollow microneedles permitted flow of microliter quantities into skin in vivo, including microinjection of insulin to reduce blood glucose levels in diabetic rats.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Microneedles represent a promising technology to deliver therapeutic compounds into the skin for a range of possible applications and the ratio of microneedle fracture force to skin insertion force was found to be optimal for needles with small tip radius and large wall thickness.

1,298 citations

Journal ArticleDOI
TL;DR: The already significant impact this field has made on the administration of various pharmaceuticals is discussed; limitations of the current technology are explored; methods under exploration for overcoming these limitations and the challenges ahead are discussed.
Abstract: The past twenty five years have seen an explosion in the creation and discovery of new medicinal agents. Related innovations in drug delivery systems have not only enabled the successful implementation of many of these novel pharmaceuticals, but have also permitted the development of new medical treatments with existing drugs. The creation of transdermal delivery systems has been one of the most important of these innovations, offering a number of advantages over the oral route. In this article, we discuss the already significant impact this field has made on the administration of various pharmaceuticals; explore limitations of the current technology; and discuss methods under exploration for overcoming these limitations and the challenges ahead.

1,275 citations


Cites background from "Microfabricated needles for transde..."

  • ...In vitro experiments have shown that inserting MICRONEEDLES into skin can increase permeability by orders of magnitude for small drugs, large macromolecules and nanoparticle...

    [...]

Journal ArticleDOI
TL;DR: Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications.

1,271 citations


Cites background from "Microfabricated needles for transde..."

  • ...The first studies of biotherapeutic delivery using microneedles employed silicon or glass microneedles for insulin delivery [38, 142], which demonstrated drops in blood-glucose levels after microneedle injection....

    [...]

  • ...Similarly, microneedle arrays have been pressed into a monolayer of prostate cancer cells bathed in a solution of calcein, a small fluorescent marker compound [38]....

    [...]

Journal ArticleDOI
TL;DR: Results indicate that biodegradable polymer microneedles can be fabricated with an appropriate geometry and sufficient strength to insert into skin, and thereby dramatically increase transdermal transport of molecules.

827 citations

Journal ArticleDOI
TL;DR: It is concluded that dissolving microneedles can be designed to gently encapsulate molecules, insert into skin, and enable bolus or sustained release delivery and leave behind no biohazardous sharp medical waste.

743 citations


Cites background from "Microfabricated needles for transde..."

  • ...Previous studies have also pretreated skin by piercing it with microneedles and then applying a topical formulation or patch to deliver drug through the permeabilized skin [6,25]....

    [...]

  • ...One approach involves pretreatment of skin with microneedles, followed by application of a transdermal patch for extended drug delivery through the permeabilized skin [6]....

    [...]

References
More filters
Book
01 Jan 1977
TL;DR: In this article, the authors estimate physical properties of pure components and Mixtures and show that the properties of these components and mixtures are similar to those of ideal gases and liquids.
Abstract: Chapter 1: The Estimation of Physical Properties. Chapter 2: Pure Component Constants. Chapter 3: Thermodynamic Properties of Ideal Gases. Chapter 4: Pressure-Volume-Temperature Relationships of Pure Gases and Liquids. Chapter 5: Pressure-Volume-Temperature Relationships of Mixtures. Chapter 6: Thermodynamic Properties of Pure Components and Mixtures. Chapter 7: Vapor Pressures and Enthalpies of Vaporization of Pure Fluids. Chapter 8: Fluid Phase Equilibria in Multicomponent Systems. Chapter 9: Viscosity. Chapter 10: Thermal Conductivity. Chapter 11: Diffusion Coefficients. Chapter 12: Surface Tension.

14,380 citations

Book
11 Oct 1996
TL;DR: A. Ratner, Biomaterials Science: An Interdisciplinary Endeavor, Materials Science and Engineering--Properties of Materials: J.E. Schoen, and R.J.Ratner, Surface Properties of Materials, and Application of Materials in Medicine and Dentistry.
Abstract: B.D. Ratner, Biomaterials Science: An Interdisciplinary Endeavor. Materials Science and Engineering--Properties of Materials: J.E. Lemons, Introduction. F.W. Cooke, Bulk Properties of Materials. B.D. Ratner, Surface Properties of Materials. Classes of Materials Used in Medicine: A.S. Hoffman, Introduction. J.B. Brunski, Metals. S.A. Visser, R.W. Hergenrother, and S.L. Cooper, Polymers. N.A. Peppas, Hydrogels. J. Kohnand R. Langer, Bioresorbable and Bioerodible Materials. L.L. Hench, Ceramics, Glasses, and Glass Ceramics. I.V. Yannas, Natural Materials. H. Alexander, Composites. B.D. Ratner and A.S. Hoffman, Thin Films, Grafts, and Coatings. S.W. Shalaby, Fabrics. A.S. Hoffman, Biologically Functional Materials. Biology, Biochemistry, and Medicine--Some Background Concepts: B.D. Ratner, Introduction. T.A. Horbett, Proteins: Structure, Properties, and Adsorption to Surfaces. J.M. Schakenraad, Cells: Their Surfaces and Interactions with Materials. F.J. Schoen, Tissues. Host Reactions to Biomaterials and Their Evaluations: F.J. Schoen, Introduction. J.M. Anderson, Inflammation, Wound Healing, and the Foreign Body Response. R.J. Johnson, Immunology and the Complement System. K. Merritt, Systemic Toxicity and Hypersensitivity. S.R. Hanson and L.A. Harker, Blood Coagulation and Blood-Materials Interaction. F.J.Schoen, Tumorigenesis and Biomaterials. A.G. Gristina and P.T. Naylor, Implant-Associated Infection. Testing Biomaterials: B.D. Ratner, Introduction. S.J. Northup, In Vitro Assessment of Tissue Compatibility. M. Spector and P.A. Lalor, In Vivo Assessment of Tissue Compatibility. S. Hanson and B.D. Ratner, Testing of Blood-Material Interactions. B.H. Vale, J.E. Willson, and S.M. Niemi, Animal Models. Degradation of Materials in the Biological Environment: B.D. Ratner, Introduction. A.J. Coury, Chemical and Biochemical Degradation of Polymers. D.F. Williams and R.L. Williams, Degradative Effects of the Biological Environment on Metals and Ceramics. C.R. McMillin, Mechanical Breakdown in the Biological Environment. Y. Pathak, F.J. Schoen, and R.J. Levy, Pathologic Calcification of Biomaterials. Application of Materials in Medicine and Dentistry: J.E. Lemons, Introduction. D. Didisheim and J.T. Watson, Cardiovascular Applications. S.W. Kim, Nonthrombogenic Treatments and Strategies. J.E. Lemons, Dental Implants. D.C. Smith, Adhesives and Sealants. M.F. Refojo, Ophthalmologic Applications. J.L. Katz, Orthopedic Applications. J. Heller, Drug Delivery Systems. D. Goupil, Sutures. J.B. Kane, R.G. Tompkins, M.L. Yarmush, and J.F. Burke, Burn Dressings. L.S. Robblee and J.D. Sweeney, Bioelectrodes. P. Yager, Biomedical Sensors and Biosensors. Artificial Organs: F.J. Schoen, Introduction. K.D. Murray and D.B. Olsen, Implantable Pneumatic Artificial Hearts. P. Malchesky, Extracorporeal Artificial Organs. Practical Aspects of Biomaterials--Implants and Devices: F.J. Schoen, Introduction. J.B. Kowalski and R.F. Morrissey, Sterilization of Implants. L.M. Graham, D. Whittlesey, and B. Bevacqua, Cardiovascular Implantation. A.N. Cranin, M. Klein, and A. Sirakian, Dental Implantation. S.A. Obstbaum, Ophthalmic Implantation. A.E. Hoffman, Implant and Device Failure. B.D. Ratner, Correlations of Material Surface Properties with Biological Responses. J.M. Anderson, Implant Retrieval and Evaluation. New Products and Standards: J.E. Lemons, Introduction. S.A. Brown, Voluntary Consensus Standards. N.B. Mateo, Product Development and Regulation. B. Ratner, Perspectives and Possibilities in Biomaterials Science. Appendix: S. Slack, Properties of Biological Fluids. Subject Index.

4,194 citations

Book
01 Jan 1997
TL;DR: The second edition of the Fundamentals of Microfabrication as discussed by the authors provides an in-depth coverage of the science of miniaturization, its methods, and materials, from the fundamentals of lithography through bonding and packaging to quantum structures and molecular engineering.
Abstract: MEMS technology and applications have grown at a tremendous pace, while structural dimensions have grown smaller and smaller, reaching down even to the molecular level. With this movement have come new types of applications and rapid advances in the technologies and techniques needed to fabricate the increasingly miniature devices that are literally changing our world.A bestseller in its first edition, Fundamentals of Microfabrication, Second Edition reflects the many developments in methods, materials, and applications that have emerged recently. Renowned author Marc Madou has added exercise sets to each chapter, thus answering the need for a textbook in this field.Fundamentals of Microfabrication, Second Edition offers unique, in-depth coverage of the science of miniaturization, its methods, and materials. From the fundamentals of lithography through bonding and packaging to quantum structures and molecular engineering, it provides the background, tools, and directions you need to confidently choose fabrication methods and materials for a particular miniaturization problem.New in the Second EditionRevised chapters that reflect the many recent advances in the fieldUpdated and enhanced discussions of topics including DNA arrays, microfluidics, micromolding techniques, and nanotechnology In-depth coverage of bio-MEMs, RF-MEMs, high-temperature, and optical MEMs.Many more links to the WebProblem sets in each chapter

2,334 citations

Book
01 Jan 1968
TL;DR: Diagnosis of skin disease neonate naevi and other developmental defects pruritus eczema lichenification, prurigo and erythroderma atopic dermatitis contact dermatitis irritants and sensitizers occupational dermatoses reactions to mechanical and thermal injury reactions to cold cutaneous photobiology.
Abstract: This latest edition continues its place as a would-be comprehensive encyclopaedia of the scope of dermatology with a vast array of disease states presented to the reader. For this new edition many chapters have been entirely rewritten to take account of the considerable advances in dermatology, and new contributors with specialized experience of the subject on which they write have joined the team.

1,738 citations