scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Microgels at Interfaces Behave as 2D Elastic Particles Featuring Reentrant Dynamics

15 Jul 2020-Physical Review X (American Physical Society)-Vol. 10, Iss: 3, pp 031012
TL;DR: Despite their complexity, microgels confined to a liquid-liquid interface can be described through relatively simple interactions that reveal the presence of intriguing behavior at high density as mentioned in this paper, which can be used to characterize the behavior of high density.
Abstract: Despite their complexity, microgels confined to a liquid-liquid interface can be described through relatively simple interactions that reveal the presence of intriguing behavior at high density.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of p(NIPAM) based microgels at interfaces is presented, revisiting classical studies in light of the newest ones, focusing on their use as emulsifiers in the so-called mickering emulsions, i.e. Pickering emulsion stabilized by soft particles.

37 citations

Journal ArticleDOI
30 Jul 2021-ACS Nano
TL;DR: In this paper, a core-shell microgel is synthesized, whose soft core can be chemically degraded in a controlled fashion to obtain a series of particles ranging from analogues of standard batch-synthesized microgels to completely hollow ones after total core removal.
Abstract: Monolayers of soft colloidal particles confined at fluid interfaces are at the core of a broad range of technological processes, from the stabilization of responsive foams and emulsions to advanced lithographic techniques. However, establishing a fundamental relation between their internal architecture, which is controlled during synthesis, and their structural and mechanical properties upon interfacial confinement remains an elusive task. To address this open issue, which defines the monolayer's properties, we synthesize core-shell microgels, whose soft core can be chemically degraded in a controlled fashion. This strategy allows us to obtain a series of particles ranging from analogues of standard batch-synthesized microgels to completely hollow ones after total core removal. Combined experimental and numerical results show that our hollow particles have a thin and deformable shell, leading to a temperature-responsive collapse of the internal cavity and a complete flattening after adsorption at a fluid interface. Mechanical characterization shows that a critical degree of core removal is required to obtain soft disk-like particles at an oil-water interface, which present a distinct response to compression. At low packing fractions, the mechanical response of the monolayer is dominated by the outer polymer chains forming a corona surrounding the particles within the interfacial plane, regardless of the presence of a core. By contrast, at high compression, the absence of a core enables the particles to deform in the direction orthogonal to the interface and to be continuously compressed without altering the monolayer structure. These findings show how fine, single-particle architectural control during synthesis can be engineered to determine the interfacial behavior of microgels, enabling one to link particle conformation with the resulting material properties.

21 citations

Journal ArticleDOI
22 Apr 2021-Langmuir
TL;DR: A multiscale framework to link the molecular particle architecture to the resulting interfacial morphology and, ultimately, to the collective interfacial phase behavior is developed, providing a phenomenological bridge between physicochemical soft-particle characteristics at the molecular scale and nanoscale and the collective self-assembly phenomenology at the macroscale.
Abstract: Soft particles such as microgels can undergo significant and anisotropic deformations when adsorbed to a liquid interface. This, in turn, leads to a complex phase behavior upon compression. To date, experimental efforts have predominantly provided phenomenological links between microgel structure and resulting interfacial behavior, while simulations have not been entirely successful in reproducing experiments or predicting the minimal requirements for the desired phase behavior. Here, we develop a multiscale framework to link the molecular particle architecture to the resulting interfacial morphology and, ultimately, to the collective interfacial phase behavior. To this end, we investigate interfacial morphologies of different poly(N-isopropylacrylamide) particle systems using phase-contrast atomic force microscopy and correlate the distinct interfacial morphology with their bulk molecular architecture. We subsequently introduce a new coarse-grained simulation method that uses augmented potentials to translate this interfacial morphology into the resulting phase behavior upon compression. The main novelty of this method is the possibility to efficiently encode multibody interactions, the effects of which are key to distinguishing between heterostructural (anisotropic collapse) and isostructural (isotropic collapse) phase transitions. Our approach allows us to qualitatively resolve existing discrepancies between experiments and simulations. Notably, we demonstrate the first in silico account of the two-dimensional isostructural transition, which is frequently found in experiments but elusive in simulations. In addition, we provide the first experimental demonstration of a heterostructural transition to a chain phase in a single-component system, which has been theoretically predicted decades ago. Overall, our multiscale framework provides a phenomenological bridge between physicochemical soft-particle characteristics at the molecular scale and nanoscale and the collective self-assembly phenomenology at the macroscale, serving as a stepping stone toward an ultimately more quantitative and predictive design approach.

19 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the microgel collapse does not happen in a homogeneous fashion, but through a two-step mechanism entirely attributable to electrostatic effects, where the constituent monomers are neutral but charged groups arise due to the initiator molecules used in the synthesis.
Abstract: Thermoresponsive microgels are one of the most investigated types of soft colloids, thanks to their ability to undergo a Volume Phase Transition (VPT) close to ambient temperature. However, this fundamental phenomenon still lacks a detailed microscopic understanding, particularly regarding the presence and the role of charges in the deswelling process. This is particularly important for the widely used poly(N-isopropylacrylamide)–based microgels, where the constituent monomers are neutral but charged groups arise due to the initiator molecules used in the synthesis. Here, we address this point combining experiments with state-of-the-art simulations to show that the microgel collapse does not happen in a homogeneous fashion, but through a two-step mechanism, entirely attributable to electrostatic effects. The signature of this phenomenon is the emergence of a minimum in the ratio between gyration and hydrodynamic radii at the VPT. Thanks to simulations of microgels with different cross-linker concentrations, charge contents, and charge distributions, we provide evidence that peripheral charges arising from the synthesis are responsible for this behavior and we further build a universal master curve able to predict the twostep deswelling. Our results have direct relevance on fundamental soft condensed matter science and on applications where microgels are involved, ranging from materials to biomedical technologies.

17 citations

Journal ArticleDOI
TL;DR: By combining compression, deposition, and visualization, it is shown that the two-dimensional phase behavior of the microgel monolayers is not altered, although the microgels have a larger total in-plane size at higher interfacial tension.
Abstract: The formation of smart emulsions or foams whose stability can be controlled on-demand by switching external parameters is of great interest for basic research and applications. An emerging group of smart stabilizers are microgels, which are nano- and micro-sized, three-dimensional polymer networks that are swollen by a good solvent. In the last decades, the influence of various external stimuli on the two-dimensional phase behavior of microgels at air- and oil-water interfaces has been studied. However, the impact of the top-phase itself has been barely considered. Here, we present data that directly address the influence of the top-phase on the microgel properties at interfaces. The dimensions of pNIPAM microgels are measured after deposition from two interfaces, i.e., air- and decane-water. While the total in-plane size of the microgel increases with increasing interfacial tension, the portions or fractions of the microgels situated in the aqueous phase are not affected. We correlate the area microgels occupy to the surface tensions of the interfaces, which allows to estimate an elastic modulus. In comparison to nanoindentation measurements, we observe a larger elastic modulus for the microgels. By combining compression, deposition, and visualization, we show that the two-dimensional phase behavior of the microgel monolayers is not altered, although the microgels have a larger total in-plane size at higher interfacial tension. A peer reviewed and extended version of this preprint and the electronic supplementary information can be found under S.~Bochenek, A.~Scotti, W.~Richtering, \textit{Soft Matter}, 2020, DOI: 10.1039/d0sm01774d.

13 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, three parallel algorithms for classical molecular dynamics are presented, which can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors.

32,670 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, a review of dissipative particle dynamics (DPD) as a mesoscopic simulation method is presented, and a link between these parameters and χ-parameters in Flory-Huggins-type models is made.
Abstract: We critically review dissipative particle dynamics (DPD) as a mesoscopic simulation method. We have established useful parameter ranges for simulations, and have made a link between these parameters and χ-parameters in Flory-Huggins-type models. This is possible because the equation of state of the DPD fluid is essentially quadratic in density. This link opens the way to do large scale simulations, effectively describing millions of atoms, by firstly performing simulations of molecular fragments retaining all atomistic details to derive χ-parameters, then secondly using these results as input to a DPD simulation to study the formation of micelles, networks, mesophases and so forth. As an example application, we have calculated the interfacial tension σ between homopolymer melts as a function of χ and N and have found a universal scaling collapse when σ/ρkBTχ0.4 is plotted against χN for N>1. We also discuss the use of DPD to simulate the dynamics of mesoscopic systems, and indicate a possible problem with...

3,837 citations

Journal ArticleDOI
TL;DR: In this article, an extensive molecular-dynamics simulation for a bead spring model of a melt of linear polymers is presented, where the number of monomers N covers the range from N=5 to N=400.
Abstract: We present an extensive molecular‐dynamics simulation for a bead spring model of a melt of linear polymers. The number of monomers N covers the range from N=5 to N=400. Since the entanglement length Ne is found to be approximately 35, our chains cover the crossover from the nonentangled to the entangled regime. The Rouse model provides an excellent description for short chains N

3,232 citations

Book
19 Oct 2001
TL;DR: In this article, a unified approach for the characterization of 2-dimensional (2-3D) moduli is presented. But the approach is not suitable for 3-dimensional moduli.
Abstract: Motivation and overview * PART I Microstructural characterization * Microstructural descriptors * Statistical mechanics of particle systems * Unified approach * Monodisperse spheres * Polydisperse spheres * Anisotropic media * Cell and random-field models * Percolation and clustering * Some continuum percolation results * Local volume fraction fluctuation * computer simulation and image analysis * PART II Microstructure property connections * Local and homogenized equations * Variational Principles * Phase-interchange relations * Exact results * Single-inclusion solutions * Effective medium approximations * Cluster expansions * Exact contrast expansions * Rigorous bounds * Evaluation of bounds * Cross-property relations * Appendix A Equilibrium Hard disk program * Appendix B Interrelations among 2-3D moduli* References * Index

3,021 citations