scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Micromechanics of room and high temperature fracture in 6xxx Al alloys

TL;DR: In this paper, a viscoplastic extension of the Gurson model has been developed for capturing the complex hierarchy of damage mechanisms, coupled with visc-oplastic and stress state effects.
About: This article is published in Progress in Materials Science.The article was published on 2007-01-01. It has received 183 citations till now. The article focuses on the topics: Ductility & Micromechanics.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive understanding of the interrelation between the various aspects of the subject, as this is essential to demonstrate credibility for industrial needs, is presented in this paper, which highlights some key topics requiring attention for further progression.

761 citations

Journal ArticleDOI
TL;DR: In this paper, the first overview of failure of metals is presented, focusing on brittle and ductile failure under monotonic loadings, where the focus is on linking microstructure, physical mechanisms and overall fracture properties.

639 citations


Cites background or methods from "Micromechanics of room and high tem..."

  • ...[162] employed a rate-dependent version of the Gurson model supplemented with a limitload void coalescence criterion to rationalize the increase of the tensile fracture strain with...

    [...]

  • ...cast Al alloys [260], wrought Al alloys [162,383], including for friction-stir welds [262], Cu alloys [384], and Mg alloys [117,385]....

    [...]

  • ...Furthermore, nucleation can be a combination of particle fracture and particle decohesion inside the same material essentially due to the dispersion of particle shape and orientation [23, 162]....

    [...]

  • ...distortion as well as void coalescence [162,221,331,379] on the basis of the models presented...

    [...]

01 Jan 2001
TL;DR: In this paper, a model for the axisymmetric growth and coalescence of small internal voids in elastoplastic solids is proposed and assessed using void cell computations.
Abstract: A model for the axisymmetric growth and coalescence of small internal voids in elastoplastic solids is proposed and assessed using void cell computations. Two contributions existing in the literature have been integrated into the enhanced model. The first is the model of Gologanu-Leblond-Devaux, extending the Gurson model to void shape effects. The second is the approach of Thomason for the onset of void coalescence. Each of these has been extended heuristically to account for strain hardening. In addition, a micromechanically-based simple constitutive model for the void coalescence stage is proposed to supplement the criterion for the onset of coalescence. The fully enhanced Gurson model depends on the flow properties of the material and the dimensional ratios of the void-cell representative volume element. Phenomenological parameters such as critical porosities are not employed in the enhanced model. It incorporates the effect of void shape, relative void spacing, strain hardening, and porosity. The effect of the relative void spacing on void coalescence, which has not yet been carefully addressed in the literature. has received special attention. Using cell model computations, accurate predictions through final fracture have been obtained for a wide range of porosity, void spacing, initial void shape, strain hardening, and stress triaxiality. These predictions have been used to assess the enhanced model. (C) 2000 Elsevier Science Ltd. All rights reserved.

519 citations

Journal ArticleDOI
TL;DR: In this paper, several criteria under the categories of uncoupled damage and coupled damage were investigated to determine their reliability in ductile failure prediction in metal plastic deformation, including the continuum damage mechanics (CDM)-based Lemaitre model and the Gurson-Tvergaard-Needleman (GTN) model, and the two categories of criteria were coded into finite element models based on the unconditional stress integration algorithm in the VUMAT/ABAQUS platform.

432 citations

Journal ArticleDOI
TL;DR: In this article, a review article summarizes the recent progresses on the complex interaction between second-phase particles and recrystallization and the science behind them, and concludes that the double-edge effect of second phase particles on the behavior and mechanical properties of metallic materials is still far from being clear.

361 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, it is shown that to answer several questions of physical or engineering interest, it is necessary to know only the relatively simple elastic field inside the ellipsoid.
Abstract: It is supposed that a region within an isotropic elastic solid undergoes a spontaneous change of form which, if the surrounding material were absent, would be some prescribed homogeneous deformation. Because of the presence of the surrounding material stresses will be present both inside and outside the region. The resulting elastic field may be found very simply with the help of a sequence of imaginary cutting, straining and welding operations. In particular, if the region is an ellipsoid the strain inside it is uniform and may be expressed in terms of tabu­lated elliptic integrals. In this case a further problem may be solved. An ellipsoidal region in an infinite medium has elastic constants different from those of the rest of the material; how does the presence of this inhomogeneity disturb an applied stress-field uniform at large distances? It is shown that to answer several questions of physical or engineering interest it is necessary to know only the relatively simple elastic field inside the ellipsoid.

11,784 citations

Journal ArticleDOI
TL;DR: In this article, a variational principle is established to characterize the flow field in an elastically rigid and incompressible plastic material containing an internal void or voids, and an approximate Rayleigh-Ritz procedure is developed and applied to the enlargement of an isolated spherical void in a nonhardening material.
Abstract: The fracture of ductile solids has frequently been observed to result from the large growth and coalescence of microscopic voids, a process enhanced by the superposition of hydrostatic tensile stresses on a plastic deformation field. The ductile growth of voids is treated here as a problem in continuum plasticity. First, a variational principle is established to characterize the flow field in an elastically rigid and incompressible plastic material containing an internal void or voids, and subjected to a remotely uniform stress and strain rate field. Then an approximate Rayleigh-Ritz procedure is developed and applied to the enlargement of an isolated spherical void in a nonhardening material. Growth is studied in some detail for the case of a remote tensile extension field with superposed hydrostatic stresses. The volume changing contribution to void growth is found to overwhelm the shape changing part when the mean remote normal stress is large, so that growth is essentially spherical. Further, it is found that for any remote strain rate field, the void enlargement rate is amplified over the remote strain rate by a factor rising exponentially with the ratio of mean normal stress to yield stress. Some related results are discussed, including the long cylindrical void considered by F.A. McClintock (1968, J. appl. Mech . 35 , 363), and an approximate relation is given to describe growth of a spherical void in a general remote field. The results suggest a rapidly decreasing fracture ductility with increasing hydrostatic tension.

4,156 citations

Journal ArticleDOI
TL;DR: In this article, a theory is suggested which describes the yielding and plastic flow of an anisotropic metal on a macroscopic scale and associated relations are then found between the stress and strain-increment tensors.
Abstract: A theory is suggested which describes, on a macroscopic scale, the yielding and plastic flow of an anisotropic metal. The type of anisotropy considered is that resulting from preferred orientation. A yield criterion is postulated on general grounds which is similar in form to the Huber-Mises criterion for isotropic metals, but which contains six parameters specifying the state of anisotropy. By using von Mises' concept (1928) of a plastic potential, associated relations are then found between the stress and strain-increment tensors. The theory is applied to experiments of Korber & Hoff (1928) on the necking under uniaxial tension of thin strips cut from rolled sheet. It is shown, in full agreement with experimental data, that there are generally two, equally possible, necking directions whose orientation depends on the angle between the strip axis and the rolling direction. As a second example, pure torsion of a thin-walled cylinder is analyzed. With increasing twist anisotropy is developed. In accordance with recent observations by Swift (1947), the theory predicts changes in length of the cylinder. The theory is also applied to determine the earing positions in cups deep-drawn from rolled sheet.

3,426 citations

Journal ArticleDOI
TL;DR: In this article, a set of elastic-plastic constitutive relations that account for the nucleation and growth of micro-voids is used to model the failure of a round tensile test specimen.

2,962 citations