scispace - formally typeset
Search or ask a question
Journal ArticleDOI

MicroRNAs and ovarian function

09 Feb 2012-Journal of Ovarian Research (BioMed Central)-Vol. 5, Iss: 1, pp 8-8
TL;DR: The current understanding of miRNA biogenesis, the role and mechanism that miRNAs play in post-transcriptional gene expression regulation, and specifically the current evidence of mi RNA involvement in ovarian development and function are reviewed.
Abstract: MicroRNAs (miRNAs) are a class of small non-coding RNAs which function in gene regulation with an important role in cell proliferation, maturation, and activity. The regulatory role of these small RNA molecules has recently begun to be explored in ovarian cells, uncovering their influence on gonadal development, steroidogenesis, apoptosis, ovulation, and corpus luteum development. This emerging area of research has extended and reshaped our understanding on how ovarian function is regulated. Here, we review the current understanding of miRNA biogenesis, the role and mechanism that miRNAs play in post-transcriptional gene expression regulation, and specifically the current evidence of miRNA involvement in ovarian development and function. Future comprehensive understanding of the role of miRNAs in the ovary in both physiological and pathological conditions may offer new treatment strategies for infertility and other ovarian disorders.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: GCs of PCOS, the expression of miR-9119, and targeted NFκB/p65-DICER axis are upregulated in order to maintain cell viability and prevent apoptosis, thereby promoting Anti-Müllerian hormone production in GCs.
Abstract: Polycystic ovary syndrome (PCOS) is a hormonal disorder common among women of reproductive age. Although much is understood concerning the pathology of PCOS, further investigation into the influence of microribonucleic acids (miRNAs) on the proliferation of ovarian granulosa cells (GCs) is needed. This study investigated the role of specific miRNAs in ovarian dysfunction of PCOS and its effect on the proliferation of GCs. Initially, miRNA profiling was performed on the ovarian cortexes of 15 rats in which PCOS had been induced and 15 rats without PCOS (non-PCOS). This mechanical study was performed on ovarian GCs extracted from human chorionic gonadotrophin (hCG)-induced rats. Insulin was used to treat GCs to establish the PCOS cell model. Increased Equus caballus mir-9119 expression was observed and confirmed in the insulin-induced model of PCOS in GCs (GC-PCOS) as well as in the hCG-induced rats when compared to non-PCOS rats and cells. Observation and confirmation were carried out through both miRNA array and quantitative PCR. In contrast, downregulation of the nuclear factor kappa B (NFκB) p65 was observed in the PCOS cell model. Additionally, annexin V, FITC, and propidium iodide flow cytometry showed overexpression of miR-9119-induced apoptosis. In this study, we revealed that miR-9119 inhibition regulates p65 expression levels in insulin-treated GCs by binding to the 3′-untranslated of p65. Additionally, regulation of p65 expression was positively correlated with the expression of the double-stranded RNA endoribonuclease DICER. Moreover, RNA silencing/overexpression of p65 affected the functional role of miR-9119. In conclusion, GCs of PCOS, the expression of miR-9119, and targeted NFκB/p65-DICER axis are upregulated in order to maintain cell viability and prevent apoptosis, thereby promoting Anti-Mullerian hormone production in GCs. This study may provide a new understanding of the mechanism of GC dysfunction.

5 citations

Journal ArticleDOI
TL;DR: In this article, a conditional immortalized porcine granulosa cell (CIPGC) line was used to determine whether the expression of Foxo3 could be regulated by the nuclear-enriched miR-195-5p.
Abstract: Forkhead box O3 (Foxo3) is a member of the FOXO subfamily within the forkhead box (FOX) family, which has been shown to be essential for ovarian follicular development and maturation. Previous studies have shown the abundant expression of miR-195-5p in the nuclei of porcine granulosa cells (GCs), suggesting its potential role during ovarian follicle growth. In this study, a conditional immortalized porcine granulosa cell (CIPGC) line was used to determine whether the expression of Foxo3 could be regulated by the nuclear-enriched miR-195-5p. Through silico target prediction, we identified a potential binding site of miR-195-5p within the Foxo3 promoter. The over-expression of miR-195-5p increased Foxo3 expression at both mRNA and protein levels, while the knockdown of miR-195-5p decreased the expression of Foxo3. Furthermore, driven by the Foxo3 promoter, luciferase reporter activity was increased in response to miR-195-5p, while the mutation of the miR-195-5p binding site in the promoter region abolished this effect. In addition, the siRNA knockdown of Argonaute (AGO) 2, but not AGO1, significantly decreased Foxo3 transcript level. However, miR-195-5p failed to upregulate Foxo3 expression when AGO2 was knocked down. Moreover, chromatin immunoprecipitation (CHIP) assay showed that anti-AGO2 antibody pulled down both AGO2 and the Foxo3 promoter sequence, suggesting that AGO2 may be required for miR-195-5p to regulate Foxo3 expression in the nucleus. Additionally, Foxo3 expression was significantly increased by valproic acid (VPA), the inhibitor of deacetylase, as well as by methyltransferase inhibitor BIX-01294, indicating the involvement of histone modification. These effects were further enhanced in the presence of miR-195-5p and were decreased when miR-195-5p was knocked down. Overall, our results suggest that nuclear-enriched miR-195-5p regulates Foxo3 expression, which may be associated with AGO2 recruitment, as well as histone demethylation and acetylation in ovarian granulosa cells.

5 citations

Journal ArticleDOI
TL;DR: The results indicate the neonatal androgenic milieu affects the onset of luteolysis when these animals are sexually mature, although mechanisms for responses to TP or FLU likely differ.

5 citations

Journal ArticleDOI
TL;DR: An evidence of how miRNA works on the regulation of Spvih, which indirectly affects the ovarian development of mud crab, is provided and a new strategy for controlling crab reproduction is suggested.

3 citations

Journal Article
TL;DR: The GO analysis showed that miR-143 played important roles in animal reproduction, cell proliferation and differentiation, and may play potential roles inAnimal reproductive biological processes such as ovarian hormone secretion and pregnancy maintenance.
Abstract: With the purpose of determining biological role of miR-143 in goat ovaries and many other biological processes,the differential expression of miR-143 between pregnant and non-pregnant goat ovaries was studied by Illumina Solexa sequencing and q-PCR technology,followed by target gene prediction and GO analysisSolexa sequencing indicated that a total of 1 074 miR-143 isomiRs were identified in goat ovaies with 109 523 total read counts,and average expression level was 102Q-PCR analysis showed that expression level of miR-143 in pregnant goat ovaries was 12 times more than that in non-pregnant goat ovaries,and the difference was significant(P 005)The GO analysis showed that miR-143 played important roles in animal reproduction,cell proliferation and differentiationMiR-143 may play potential roles in animal reproductive biological processes such as ovarian hormone secretion and pregnancy maintenance

3 citations


Additional excerpts

  • ...与真核生物的生殖、发育、病毒防御、细胞增殖和 凋亡、脂肪代谢等多种生命活动([1-4])。MiR-143 为一 种广泛性表达的 miRNA,可在不同物种的许多组织 器官以及特定细胞中检测到它的表达。研究表明其...

    [...]

References
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations


"MicroRNAs and ovarian function" refers background in this paper

  • ...The genes that encode miRNAs, which comprise a class of naturally occurring, small non-coding RNAs, are generally transcribed by RNA polymerase II, processed into short hairpin RNAs by the enzyme Drosha and its RNA-binding cofactor DiGeorge syndrome critical region gene 8 (DGCR8), as shown in Figure 1 [4-7]....

    [...]

Journal ArticleDOI
19 Feb 1998-Nature
TL;DR: To their surprise, it was found that double-stranded RNA was substantially more effective at producing interference than was either strand individually, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process.
Abstract: Experimental introduction of RNA into cells can be used in certain biological systems to interfere with the function of an endogenous gene Such effects have been proposed to result from a simple antisense mechanism that depends on hybridization between the injected RNA and endogenous messenger RNA transcripts RNA interference has been used in the nematode Caenorhabditis elegans to manipulate gene expression Here we investigate the requirements for structure and delivery of the interfering RNA To our surprise, we found that double-stranded RNA was substantially more effective at producing interference than was either strand individually After injection into adult animals, purified single strands had at most a modest effect, whereas double-stranded mixtures caused potent and specific interference The effects of this interference were evident in both the injected animals and their progeny Only a few molecules of injected double-stranded RNA were required per affected cell, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process

15,374 citations


"MicroRNAs and ovarian function" refers background in this paper

  • ...MicroRNAs (miRNAs) are small (19-25 bp) RNAs that diversely regulate gene expression through their decrease of messenger RNA (mRNA) stability or translation [1-3]....

    [...]

Journal ArticleDOI
14 Jan 2005-Cell
TL;DR: In a four-genome analysis of 3' UTRs, approximately 13,000 regulatory relationships were detected above the estimate of false-positive predictions, thereby implicating as miRNA targets more than 5300 human genes, which represented 30% of the gene set.

11,624 citations


"MicroRNAs and ovarian function" refers background in this paper

  • ...It has been estimated that 30-90% of messenger RNAs may be subjected to miRNA regulation, and individual miRNAs are predicted to target up to several hundred genes [14-16]....

    [...]

Journal ArticleDOI
TL;DR: The results indicate that miRNAs are extensively involved in cancer pathogenesis of solid tumors and support their function as either dominant or recessive cancer genes.
Abstract: Small noncoding microRNAs (miRNAs) can contribute to cancer development and progression and are differentially expressed in normal tissues and cancers From a large-scale miRnome analysis on 540 samples including lung, breast, stomach, prostate, colon, and pancreatic tumors, we identified a solid cancer miRNA signature composed by a large portion of overexpressed miRNAs Among these miRNAs are some with well characterized cancer association, such as miR-17-5p, miR-20a, miR-21, miR-92, miR-106a, and miR-155 The predicted targets for the differentially expressed miRNAs are significantly enriched for protein-coding tumor suppressors and oncogenes (P < 00001) A number of the predicted targets, including the tumor suppressors RB1 (Retinoblastoma 1) and TGFBR2 (transforming growth factor, beta receptor II) genes were confirmed experimentally Our results indicate that miRNAs are extensively involved in cancer pathogenesis of solid tumors and support their function as either dominant or recessive cancer genes

5,791 citations


"MicroRNAs and ovarian function" refers background in this paper

  • ...In addition, miRNAs may also increase translation of specific mRNAs in a manner dependent on the cell cycle [25], and a large number of miRNAs may be expressed in a tissue-specific manner [26]....

    [...]

Journal ArticleDOI
20 Feb 2009-Cell
TL;DR: This work has revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access, which has direct implications for fundamental biology as well as disease etiology and treatment.

4,490 citations


"MicroRNAs and ovarian function" refers background in this paper

  • ...Recognition is thought to mainly involve base pairing of miRNA nucleotides 2-8, representing the seed sequence [13]....

    [...]