scispace - formally typeset
Search or ask a question
Journal ArticleDOI

MicroRNAs and ovarian function

09 Feb 2012-Journal of Ovarian Research (BioMed Central)-Vol. 5, Iss: 1, pp 8-8
TL;DR: The current understanding of miRNA biogenesis, the role and mechanism that miRNAs play in post-transcriptional gene expression regulation, and specifically the current evidence of mi RNA involvement in ovarian development and function are reviewed.
Abstract: MicroRNAs (miRNAs) are a class of small non-coding RNAs which function in gene regulation with an important role in cell proliferation, maturation, and activity. The regulatory role of these small RNA molecules has recently begun to be explored in ovarian cells, uncovering their influence on gonadal development, steroidogenesis, apoptosis, ovulation, and corpus luteum development. This emerging area of research has extended and reshaped our understanding on how ovarian function is regulated. Here, we review the current understanding of miRNA biogenesis, the role and mechanism that miRNAs play in post-transcriptional gene expression regulation, and specifically the current evidence of miRNA involvement in ovarian development and function. Future comprehensive understanding of the role of miRNAs in the ovary in both physiological and pathological conditions may offer new treatment strategies for infertility and other ovarian disorders.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
04 Feb 2014-PLOS ONE
TL;DR: The present study provides the first global miRNA transcriptome data in A. cygnoides and identifies novel and known miRNAs that are differentially expressed between the ovaries of laying and broody geese, contributing to the understanding of the functional involvement of mi RNAs in the broody period of goose.
Abstract: Background Recent functional studies have demonstrated that the microRNAs (miRNAs) play critical roles in ovarian gonadal development, steroidogenesis, apoptosis, and ovulation in mammals. However, little is known about the involvement of miRNAs in the ovarian function of fowl. The goose (Anas cygnoides) is a commercially important food that is cultivated widely in China but the goose industry has been hampered by high broodiness and poor egg laying performance, which are influenced by ovarian function.

27 citations

Journal ArticleDOI
TL;DR: The recent advances in miRNA-mediated regulation of steroidogenesis with emphasis on adrenal and gonadal steroidogenesis are summarized.
Abstract: miRNAs are endogenous noncoding single-stranded small RNAs of ~22 nucleotides in length that post-transcriptionally repress the expression of their various target genes. They contribute to the regulation of a variety of physiologic processes including embryonic development, differentiation and proliferation, apoptosis, metabolism, hemostasis and inflammation. In addition, aberrant miRNA expression is implicated in the pathogenesis of numerous diseases including cancer, hepatitis, cardiovascular diseases and metabolic diseases. Steroid hormones regulate virtually every aspect of metabolism, and acute and chronic steroid hormone biosynthesis is primarily regulated by tissue-specific trophic hormones involving transcriptional and translational events. In addition, it is becoming increasingly clear that steroidogenic pathways are also subject to post-transcriptional and post-translational regulations including processes such as phosphorylation/dephosphorylation, protein‒protein interactions and regulation by specific miRNAs, although the latter is in its infancy state. Here, we summarize the recent advances in miRNA-mediated regulation of steroidogenesis with emphasis on adrenal and gonadal steroidogenesis.

26 citations

Journal ArticleDOI
TL;DR: The results suggest that microRNAs are involved in mediating the effect of maternal protein restriction on ovarian function through regulating the expression of folliculogenic and steroidogenic genes in newborn piglets.
Abstract: Maternal malnutrition during pregnancy may give rise to female offspring with disrupted ovary functions in adult age. Neonatal ovary development predisposes adult ovary function, yet the effect of maternal nutrition on the neonatal ovary has not been described. Therefore, here we show the impact of maternal protein restriction on the expression of folliculogenic and steroidogenic genes, their regulatory microRNAs and promoter DNA methylation in the ovary of neonatal piglets. Sows were fed either standard-protein (SP, 15% crude protein) or low-protein (LP, 7.5% crude protein) diets throughout gestation. Female piglets born to LP sows showed significantly decreased ovary weight relative to body weight (p<0.05) at birth, which was accompanied with an increased serum estradiol level (p<0.05). The LP piglets demonstrated higher ratio of bcl-2 associated X protein/B cell lymphoma/leukemia-2 mRNA (p<0.01), which was associated with up-regulated mRNA expression of bone morphogenic protein 4 (BMP4) (p<0.05) and proliferating cell nuclear antigen (PCNA) (p<0.05). The steroidogenic gene, cytochrome P450 aromatase (CYP19A1) was significantly down-regulated (p<0.05) in LP piglets. The alterations in ovarian gene expression were associated with a significant down-regulation of follicle-stimulating hormone receptor mRNA expression (p<0.05) in LP piglets. Moreover, three microRNAs, including miR-423-5p targeting both CYP19A1 and PCNA, miR-378 targeting CYP19A1 and miR-210 targeting BMP4, were significantly down-regulated (p<0.05) in the ovary of LP piglets. These results suggest that microRNAs are involved in mediating the effect of maternal protein restriction on ovarian function through regulating the expression of folliculogenic and steroidogenic genes in newborn piglets.

25 citations


Additional excerpts

  • ..., 2008) have been explored recently (Baley and Li, 2012)....

    [...]

Journal ArticleDOI
TL;DR: Gene transfection studies of luciferase constructs containing the 3'-untranslated region of CYP11B1 or CYP 11B2, combined with miRNA overexpression and knockdown experiments provide compelling evidence that CYP12B1 and CYP13B2 mRNAs are likely targets of miR-10b.

24 citations


Cites background from "MicroRNAs and ovarian function"

  • ...(Guo et al., 2009; Finnerty et al., 2010) and several studies have demonstrated that miRNAs are implicated in the physiological functions of various endocrine tissues (Baley and Li, 2012), the role of miRNAs in adrenal cell physiology remain largely unknown....

    [...]

  • ..., 2010) and several studies have demonstrated that miRNAs are implicated in the physiological functions of various endocrine tissues (Baley and Li, 2012), the role of miRNAs in adrenal cell physiology remain largely unknown....

    [...]

Journal ArticleDOI
TL;DR: The mechanism of ovarian aging and the extensive role of melatonin in the ovarian aging process are described herein, and new insights into ovarian aging are supply and a novel drug ofmelatonin for ovarian aging treatment is supply.
Abstract: In previous studies, oxidative stress damage has been solely considered to be the mechanism of ovarian aging, and several antioxidants have been used to delay ovarian aging But recently, more reports have found that endoplasmic reticulum stress, autophagy, sirtuins, mitochondrial dysfunction, telomeres, gene mutation, premature ovarian failure, and polycystic ovary syndrome are all closely related to ovarian aging, and these factors all interact with oxidative stress These novel insights on ovarian aging are summarized in this review Furthermore, as a pleiotropic molecule, melatonin is an important antioxidant and used as drugs for several diseases treatment Melatonin regulates not only oxidative stress, but also the various molecules, and normal and pathological processes interact with ovarian functions and aging Hence, the mechanism of ovarian aging and the extensive role of melatonin in the ovarian aging process are described herein This systematic review supply new insights into ovarian aging and the use of melatonin to delay its onset, further supply a novel drug of melatonin for ovarian aging treatment

24 citations

References
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations


"MicroRNAs and ovarian function" refers background in this paper

  • ...The genes that encode miRNAs, which comprise a class of naturally occurring, small non-coding RNAs, are generally transcribed by RNA polymerase II, processed into short hairpin RNAs by the enzyme Drosha and its RNA-binding cofactor DiGeorge syndrome critical region gene 8 (DGCR8), as shown in Figure 1 [4-7]....

    [...]

Journal ArticleDOI
19 Feb 1998-Nature
TL;DR: To their surprise, it was found that double-stranded RNA was substantially more effective at producing interference than was either strand individually, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process.
Abstract: Experimental introduction of RNA into cells can be used in certain biological systems to interfere with the function of an endogenous gene Such effects have been proposed to result from a simple antisense mechanism that depends on hybridization between the injected RNA and endogenous messenger RNA transcripts RNA interference has been used in the nematode Caenorhabditis elegans to manipulate gene expression Here we investigate the requirements for structure and delivery of the interfering RNA To our surprise, we found that double-stranded RNA was substantially more effective at producing interference than was either strand individually After injection into adult animals, purified single strands had at most a modest effect, whereas double-stranded mixtures caused potent and specific interference The effects of this interference were evident in both the injected animals and their progeny Only a few molecules of injected double-stranded RNA were required per affected cell, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process

15,374 citations


"MicroRNAs and ovarian function" refers background in this paper

  • ...MicroRNAs (miRNAs) are small (19-25 bp) RNAs that diversely regulate gene expression through their decrease of messenger RNA (mRNA) stability or translation [1-3]....

    [...]

Journal ArticleDOI
14 Jan 2005-Cell
TL;DR: In a four-genome analysis of 3' UTRs, approximately 13,000 regulatory relationships were detected above the estimate of false-positive predictions, thereby implicating as miRNA targets more than 5300 human genes, which represented 30% of the gene set.

11,624 citations


"MicroRNAs and ovarian function" refers background in this paper

  • ...It has been estimated that 30-90% of messenger RNAs may be subjected to miRNA regulation, and individual miRNAs are predicted to target up to several hundred genes [14-16]....

    [...]

Journal ArticleDOI
TL;DR: The results indicate that miRNAs are extensively involved in cancer pathogenesis of solid tumors and support their function as either dominant or recessive cancer genes.
Abstract: Small noncoding microRNAs (miRNAs) can contribute to cancer development and progression and are differentially expressed in normal tissues and cancers From a large-scale miRnome analysis on 540 samples including lung, breast, stomach, prostate, colon, and pancreatic tumors, we identified a solid cancer miRNA signature composed by a large portion of overexpressed miRNAs Among these miRNAs are some with well characterized cancer association, such as miR-17-5p, miR-20a, miR-21, miR-92, miR-106a, and miR-155 The predicted targets for the differentially expressed miRNAs are significantly enriched for protein-coding tumor suppressors and oncogenes (P < 00001) A number of the predicted targets, including the tumor suppressors RB1 (Retinoblastoma 1) and TGFBR2 (transforming growth factor, beta receptor II) genes were confirmed experimentally Our results indicate that miRNAs are extensively involved in cancer pathogenesis of solid tumors and support their function as either dominant or recessive cancer genes

5,791 citations


"MicroRNAs and ovarian function" refers background in this paper

  • ...In addition, miRNAs may also increase translation of specific mRNAs in a manner dependent on the cell cycle [25], and a large number of miRNAs may be expressed in a tissue-specific manner [26]....

    [...]

Journal ArticleDOI
20 Feb 2009-Cell
TL;DR: This work has revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access, which has direct implications for fundamental biology as well as disease etiology and treatment.

4,490 citations


"MicroRNAs and ovarian function" refers background in this paper

  • ...Recognition is thought to mainly involve base pairing of miRNA nucleotides 2-8, representing the seed sequence [13]....

    [...]