scispace - formally typeset
Search or ask a question
Journal ArticleDOI

MicroRNAs and the cell cycle

01 May 2011-Biochimica et Biophysica Acta (Biochim Biophys Acta)-Vol. 1812, Iss: 5, pp 592-601
TL;DR: The control of cell proliferation by microRNAs (miRNAs) is well established and the alteration of these small, non-coding RNAs may contribute to tumor development by perturbing critical cell cycle regulators.
About: This article is published in Biochimica et Biophysica Acta.The article was published on 2011-05-01 and is currently open access. It has received 353 citations till now. The article focuses on the topics: Cell Cycle Protein & Cell cycle.
Citations
More filters
Journal ArticleDOI
TL;DR: The current knowledge and concepts concerning the involvement of microRNAs in cancer, which have emerged from the study of cell culture and animal model systems, including the regulation of key cancer‐related pathways, such as cell cycle control and the DNA damage response are summarized.

985 citations


Cites background from "MicroRNAs and the cell cycle"

  • ...…et al., 2008) and cell division cycle phosphatases like CDC25A (Sarkar et al., 2010; Yang et al., 2009) are also targeted by miRNAs to inhibit the cell cycle, with reports of these miRNAs being downregulated or lost in tumour cells (Bueno and Malumbres, 2011; Johnson et al., 2007; Yu et al., 2008)....

    [...]

Journal ArticleDOI
TL;DR: An overview of oligonucleotide-based drug platforms is provided, focusing on key approaches — including chemical modification, bioconjugation and the use of nanocarriers — which aim to address the delivery challenge.
Abstract: Oligonucleotides can be used to modulate gene expression via a range of processes including RNAi, target degradation by RNase H-mediated cleavage, splicing modulation, non-coding RNA inhibition, gene activation and programmed gene editing. As such, these molecules have potential therapeutic applications for myriad indications, with several oligonucleotide drugs recently gaining approval. However, despite recent technological advances, achieving efficient oligonucleotide delivery, particularly to extrahepatic tissues, remains a major translational limitation. Here, we provide an overview of oligonucleotide-based drug platforms, focusing on key approaches - including chemical modification, bioconjugation and the use of nanocarriers - which aim to address the delivery challenge.

848 citations

Journal ArticleDOI
TL;DR: The knowledge of the Myc-dependent cell cycle regulatory mechanisms will help to discover new therapeutic approaches directed against malignancies with deregulated Myc.

533 citations


Cites background from "MicroRNAs and the cell cycle"

  • ...miR-34a inhibits expression of cell-cycle regulators such as Cdk4, Cdk6, cyclin E2 and E2Fs, while miR-15a/16-1 regulates Cdk6, E2F3, cyclin D1 and D3; and miR-26a represses cyclin D2 and E2 (reviewed in [127,129])....

    [...]

Journal ArticleDOI
TL;DR: The activities of E1F proteins in cancer and therapeutic strategies to target this oncogenic pathway are discussed, with an emphasis on the newest atypical E2F family members.
Abstract: The cyclin-dependent kinase (CDK)-RB-E2F axis forms the core transcriptional machinery driving cell cycle progression, dictating the timing and fidelity of genome replication and ensuring genetic material is accurately passed through each cell division cycle. The ultimate effectors of this axis are members of a family of eight distinct E2F genes encoding transcriptional activators and repressors. E2F transcriptional activity is tightly regulated throughout the cell cycle via transcriptional and translational regulation, post-translational modifications, protein degradation, binding to cofactors and subcellular localization. Alterations in one or more key components of this axis (CDKs, cyclins, CDK inhibitors and the RB family of proteins) occur in virtually all cancers and result in heightened oncogenic E2F activity, leading to uncontrolled proliferation. In this Review, we discuss the activities of E2F proteins with an emphasis on the newest atypical E2F family members, the specific and redundant functions of E2F proteins, how misexpression of E2F transcriptional targets promotes cancer and both current and developing therapeutic strategies being used to target this oncogenic pathway.

387 citations

References
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal ArticleDOI
15 Sep 2004-Nature
TL;DR: Evidence is mounting that animal miRNAs are more numerous, and their regulatory impact more pervasive, than was previously suspected.
Abstract: MicroRNAs (miRNAs) are small RNAs that regulate the expression of complementary messenger RNAs. Hundreds of miRNA genes have been found in diverse animals, and many of these are phylogenetically conserved. With miRNA roles identified in developmental timing, cell death, cell proliferation, haematopoiesis and patterning of the nervous system, evidence is mounting that animal miRNAs are more numerous, and their regulatory impact more pervasive, than was previously suspected.

9,986 citations


"MicroRNAs and the cell cycle" refers background in this paper

  • ...miRNAs are a class of endogenously expressed, noncoding RNAs that control the stability and translation of protein-coding mRNAs [11,12]....

    [...]

Journal ArticleDOI
TL;DR: This work overhauled its tool for finding preferential conservation of sequence motifs and applied it to the analysis of human 3'UTRs, increasing by nearly threefold the detected number of preferentially conserved miRNA target sites.
Abstract: MicroRNAs (miRNAs) are small endogenous RNAs that pair to sites in mRNAs to direct post-transcriptional repression. Many sites that match the miRNA seed (nucleotides 2–7), particularly those in 3 untranslated regions (3UTRs), are preferentially conserved. Here, we overhauled our tool for finding preferential conservation of sequence motifs and applied it to the analysis of human 3UTRs, increasing by nearly threefold the detected number of preferentially conserved miRNA target sites. The new tool more efficiently incorporates new genomes and more completely controls for background conservation by accounting for mutational biases, dinucleotide conservation rates, and the conservation rates of individual UTRs. The improved background model enabled preferential conservation of a new site type, the “offset 6mer,” to be detected. In total, >45,000 miRNA target sites within human 3UTRs are conserved above background levels, and >60% of human protein-coding genes have been under selective pressure to maintain pairing to miRNAs. Mammalian-specific miRNAs have far fewer conserved targets than do the more broadly conserved miRNAs, even when considering only more recently emerged targets. Although pairing to the 3 end of miRNAs can compensate for seed mismatches, this class of sites constitutes less than 2% of all preferentially conserved sites detected. The new tool enables statistically powerful analysis of individual miRNA target sites, with the probability of preferentially conserved targeting (PCT) correlating with experimental measurements of repression. Our expanded set of target predictions (including conserved 3-compensatory sites), are available at the TargetScan website, which displays the PCT for each site and each predicted target.

7,744 citations


"MicroRNAs and the cell cycle" refers background in this paper

  • ...Bioinformatics estimates suggest that more than 30–60% of the human genome may be subjected to regulation by miRNAs [12,14]....

    [...]

Journal ArticleDOI
TL;DR: MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment and has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein-coding genes involved in cancer.
Abstract: MicroRNA (miRNA ) alterations are involved in the initiation and progression of human cancer. The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery. MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment. In addition, profiling has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein- coding genes involved in cancer.

6,345 citations

Journal Article
TL;DR: The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery as discussed by the authors.
Abstract: MicroRNA (miRNA) alterations are involved in the initiation and progression of human cancer. The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery. MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment. In addition, profiling has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein- coding genes involved in cancer.

6,306 citations