scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Microstrip Patch With Nonproximal Symmetric Defected Ground Structure (DGS) for Improved Cross-Polarization Properties over Principal Radiation Planes

TL;DR: In this article, a symmetric and nonproximal defected ground structure has been proposed for a square microstrip patch to achieve high co-to-cross-polarized isolation over the principal radiation planes.
Abstract: A symmetric as well as nonproximal defected ground structure has been conceived for a square microstrip patch to achieve high co- to cross-polarized (XP) isolation over the principal radiation planes. This design does not follow the thumb rule of earlier works where the defect was deployed either underneath or in close proximity to the patch boundary. The proposed configuration, therefore, appears to be ideal for some specific applications, such as dual-polarized or circularly polarized patches with improved polarization purity. A representative design in C-band has been discussed, leading to the proof of concept. Experimental verification confirms up to 8–10 dB improvement in XP level, particularly in the H-plane.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a dual-polarized radiating element designed to achieve low crosspolarization (lower than −40 dB measured for the E-and H-plane, at least −30 dB in the D-plane based on simulations) and large fractional bandwidth (18%) over wide scanning angles (±60°) is presented.
Abstract: This contribution presents the results of a dual-polarized radiating element designed to achieve low cross-polarization (lower than −40 dB measured for the E-and H-plane, at least −30 dB in the D-plane based on simulations) and large fractional bandwidth (18%) over wide scanning angles (±60°). The proposed design includes multiple features that enable high isolation between ports, reduction of spurious radiation, highly symmetrical radiated fields, and suppression of diffracted fields between contiguous subarray gaps. To verify the polarimetric requirements for a weather radar, simulated and measured results, including electronic scanning of the array and embedded element patterns of the antenna, are shown.

56 citations

Journal ArticleDOI
01 Jan 2016-Frequenz
TL;DR: In this article, a simple, compact and single element rectangular microstrip antenna with three pairs of shorting plates has been proposed and investigated experimentally for broad impedance bandwidth and improved cross polarized (XP) radiation compared to maximum co-polarized (CO) gain without affecting the co polarized radiation pattern.
Abstract: Abstract A simple, compact and single element rectangular microstrip antenna with three pairs of shorting plates has been proposed and investigated experimentally for broad impedance bandwidth and improved cross polarized (XP) radiation compared to maximum co-polarized (CO) gain without affecting the co-polarized radiation pattern. Around 25–40 dB isolation between copolarized radiation to cross polarized radiation (CO-XP isolation) along with 1.32 GHz impedance bandwidth is achieved with the proposed structure. The present structure is very simple and easy to manufacture and provides high CO-XP isolation over entire angular range around the broadside direction. Moreover, the present structure is free from back radiation in terms of XP fields. The present investigation provides an insightful, visualization-based understanding of concurrent improvement in impedance bandwidth and the XP radiation characteristics with the present structure.

25 citations

Journal ArticleDOI
10 Jun 2019-Sensors
TL;DR: The proposed defected ground-structured antenna with a stub-slot configuration shows a stable radiation pattern and high realized gain with wide impedance bandwidth using the EBG structure, which are necessary for the requirements of IoT applications offered by 5G technology.
Abstract: In this paper, a defected ground-structured antenna with a stub-slot configuration is proposed for future 5G wireless applications. A simple stub-slot configuration is used in the patch antenna to get the dual band frequency response in the 5G mid-band and the upper unlicensed frequency region. Further, a 2-D double period Electronic band gap (EBG) structure has been implemented as a defect in the metallic ground plane to get a wider impedance bandwidth. The size of the slots and their positions are optimized to get a considerably high impedance bandwidth of 12.49% and 4.49% at a passband frequency of 3.532 GHz and 6.835 GHz, respectively. The simulated and measured realized gain and reflection coefficients are in good agreement for both operating bandwidths. The overall antenna structure size is 33.5 mm × 33.5 mm. The antenna is fabricated and compared with experimental results. The proposed antenna shows a stable radiation pattern and high realized gain with wide impedance bandwidth using the EBG structure, which are necessary for the requirements of IoT applications offered by 5G technology.

22 citations


Cites background from "Microstrip Patch With Nonproximal S..."

  • ...Good isolation between the co- and cross-polarization (XP), as well as reduced XP levels in the H-plane, have been achieved by implementing symmetric and non-proximal DGS shapes in [6], but a slight gain reduction was observed....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a new idea of compensating spurious radiations usually occurring from the sharp transitions at patch to feed and feed to impedance transformer junctions which result in added cross-polarized (XP) fields in planar microstrip-fed patches.
Abstract: This communication proposes a new idea of compensating spurious radiations usually occurring from the sharp transitions at patch to feed and feed to impedance transformer junctions which result in added cross-polarized (XP) fields in planar microstrip-fed patches A strategic design and deployment of defected ground structure (DGS) have been explored successfully as a potential means to resolve such long-standing radiation issues The quantum of radiations from the feed has been theoretically estimated These along with the main source of XP fields (higher order mode) have been addressed by introducing a composite type of DGS The experimental validation executed at the C-band establishes this simple low-cost solution with a promise of 10 to 14 dB improvement in the H-plane XP fields It is also ensured that the proposed technique is equally useful in realizing dual-fed dual-polarized configurations without affecting the primary radiation and antenna performance

21 citations

Journal ArticleDOI
TL;DR: In this paper, three miniaturization techniques were combined to achieve compact size while maintaining optimal performances of a dual-band star shape slotted Microstrip Patch Antenna (MPA) operating at 2.4 and 5 GHz resonant frequencies.
Abstract: Three miniaturization techniques were combined in this work to achieve compact size while maintaining optimal performances of a dual-band star shape slotted Microstrip Patch Antenna (MPA) operating at 2.4 and 5 GHz resonant frequencies. High permittivity substrate and slot techniques were used for miniaturization and impedance matching improvement, while DGS technique was necessary for bandwidth enhancement and further miniaturization of the reference MPA. The miniaturized antenna shows a planar structure and occupies a very small area of 15.55× 19.80 mm2 achieving patch size area reduction of 71.24% and overall size reduction of 75.42%. Respectable positive gains were maintained with radiation efficiency exceeding 83% and 68% at 2.4 GHz and 5GHz, respectively. The reference and miniaturized MPAs were fabricated, then their performances were measured and compared to the simulated ones. The measured impedance bandwidths of the miniaturized MPA were around 38% and 13% at the two resonant frequencies, respectively, which confirm the originality and suitability of the miniaturized MPA for Wireless Local Area Network WLAN and ISM applications.

12 citations


Cites background from "Microstrip Patch With Nonproximal S..."

  • ...It is the reason that DGS technique has become one of the most interesting ways to overcome the limitation of a compact antenna, in terms of gain [8], Cross-Polarized Radiation [9, 10], and impedance bandwidth [11, 12]....

    [...]

References
More filters
Book
31 Oct 2000
TL;DR: Feeding Techniques and Modeling, Design and Analysis of Microstrip Antenna Arrays: Parallel and Series Feed Systems, and Theory and Design of Active Integrated Micro Strip Antenna Amplifiers.
Abstract: Microstrip Radiators: Various Microstrip Antenna Configurations. Feeding Techniques and Modeling. Applications. Radiation Field. Surface Waves and Photonic Band-Gap Structures. Analytical Models for Microstrip Antennas: Transmission Line Model. Cavity Model. Generalized Cavity Model. Multi-port Network Model (MNM). Radiation Fields. Aperture Admittance. Mutual Admittance. Model for Coaxial Probe in Microstrip Antennas. Comparison of Analytical Models. Full-Wave Analysis of Microstrip Antennas: Spectral Domain Full-Wave Analysis. Mixed-Potential Integral Equation Analysis. Finite-Difference Time Domain Analysis.Rectangular Microstrip Antenna: Models for Rectangular Patch Antenna. Design Considerations for Rectangular Patch Antennas. Tolerance Analysis of Rectangular Microstrip Antennas. Mechanical Tuning of Patch Antennas. Quarter-wave Rectangular Patch Antenna. Circular Disk and Ring Antennas: Analysis of a Circular Disk Microstrip Antenna. Design Considerations for Circular Disk Antennas. Semicircular Disk and Circular Sector Microstrip Antennas. Comparison Of Rectangular And Circular Disk Microstrip Antennas. Circular Ring or Annular Ring Microstrip Antenna. Circular Sector Microstrip Ring Antenna. Microstrip Ring Antennas of Non-Circular Shapes. Dipoles and Triangular Patch Antennas: Microstrip Dipole and Center-Fed Dipoles. Triangular Microstrip Patch Antenna. Design of an Equilateral Triangular Patch Antenna. Microstrip Slot Antennas: Microstrip-Fed Rectangular Slot Antennas. CPW-Fed Slot Antennas. Annular Slot Antennas. Tapered Slot Antennas (TSA). Comparison of Slot Antennas with Microstrip Antennas. Circularly Polarized Microstrip Antennas and Techniques: Various Types of Circularly Polarized Microstrip Antennas. Singly-Fed Circularly Polarized Microstrip Antennas. Dual-Orthagonal Feed Circularly Polarized Microstrip Antennas. Circularly Polarized Traveling-Wave Microstrip-Line Arrays. Bandwidth Enhancement Techniques. Sequentially Rotated Arrays. Broad-Banding of Microstrip Antennas: Effect of Substrate Parameters on Bandwidth. Selection of Suitable Patch Shape. Selection of Suitable Feeding Technique. Multi-Moding Techniques. Other Broadbanding Techniques. Multifrequency Operation. Loaded Microstrip Antennas and Applications: Polarization Diversity Using Microstrip Antennas. Frequency Agile Microstrip Antennas. Radiation Pattern Control of Microstrip Antennas. Loading Effect of a Short. Compact Patch Antennas. Planar Inverted F Antenna. Dual-Frequency Microstrip Antennas. Dual-Frequency Compact Microstrip Antennas. Active Integrated Microstrip Antennas: Classification of Active Integrated Microstrip Antennas. Theory and Design of Active Integrated Microstrip Antenna Oscillators. Theory and Design of Active Integrated Microstrip Antenna Amplifiers. Frequency Conversion Active Integrated Microstrip Antenna Theory and Design. Design and Analysis of Microstrip Antenna Arrays: Parallel and Series Feed Systems. Mutual Coupling. Design of Linear Arrays. Design of Planar Arrays. Monolithic Integrated Phased Arrays.

3,612 citations


"Microstrip Patch With Nonproximal S..." refers methods in this paper

  • ...575 mm and the patch dimensions are determined by using [12]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a defected ground structure (DGS) pattern is proposed to reduce the cross-polarized (XP) radiation of a microstrip patch antenna, which is simple and easy to etch on a commercial microstrip substrate.
Abstract: A defected ground structure (DGS) is proposed to reduce the cross-polarized (XP) radiation of a microstrip patch antenna. The proposed DGS pattern is simple and easy to etch on a commercial microstrip substrate. This will only reduce the XP radiation field without affecting the dominant mode input impedance and co-polarized radiation patterns of a conventional antenna. The new concept has been examined and verified experimentally for a particular DGS pattern employing a circular patch as the radiator. Both simulation and experimental results are presented.

275 citations

BookDOI
08 Nov 2010
TL;DR: In this article, Chen et al. present a survey of the state-of-the-art in the field of reconfigurable antenna design and their application in WSNs and wearable antenna networks.
Abstract: Preface. List of Contributors. Acknowledgments. 1 Numerical Analysis Techniques (Ramesh Garg). 1.1 Introduction. 1.2 Standard (Yee s) FDTD Method. 1.3 Numerical Dispersion of FDTD Algorithms and Hybrid Schemes. 1.4 Stability of Algorithms. 1.5 Absorbing Boundary Conditions. 1.6 LOD-FDTD Algorithm. 1.7 Robustness of Printed Patch Antennas. 1.8 Thin Dielectric Approximation. 1.9 Modeling of PEC and PMC for Irregular Geometries. References. 2 Computer Aided Design of Microstrip Antennas (Debatosh Guha and Jawad Y. Siddiqui). 2.1 Introduction. 2.2 Microstrip Patch as Cavity Resonator. 2.3 Resonant Frequency of Circular Microstrip Patch (CMP). 2.4 Resonant Frequency of Rectangular Microstrip Patch (RMP) with Variable Air Gap. 2.5 Resonant Frequency of an Equilateral Triangular Microstrip Patch (ETMP) with Variable Air Gap. 2.6 Input Impedance of a Microstrip Patch. 2.7 Feed Reactance of a Probe-Fed Microstrip Patch. 2.8 Radiation Characteristics. 2.9 Radiation Efficiency. 2.10 Bandwidth. 2.11 Conclusion. References. 3 Generalized Scattering Matrix Approach for Multilayer Patch Arrays (Arun K. Bhattacharyya). 3.1 Introduction. 3.2 Outline of the GSM Approach. 3.3 Mutual Coupling Formulation. 3.4 Finite Array: Active Impedance and Radiation Patterns. 3.5 Numerical Example. 3.6 Conclusions. 3.7 References. 4 Optimization Techniques for Planner Antennas (Rabindra K. Mishra). 4.1 Introduction. 4.2 Basic Optimization Concepts. 4.3 Real Coded Genetic Algorithm (RCGA). 4.4 Neurospectral Design of Rectangular Patch Antenna. 4.5 Inset-fed Patch Antenna Design Using Particle Swarm Optimization. 4.6 Conclusion. References. 5 Microstrip Reflectarray Antennas (Jafar Shaker and Reza Chaharmir). 5.1 Introduction. 5.2 General Review of Reflectarrays: Mathematical Formulation and General Trends. 5.3 Comparison of Reflectarray and Conventional Parabolic Reflector. 5.4 Cell Elements and Specific Applications: A General Survey. 5.5 Wideband Techniques for Reflectarrays. 5.6 Development of Novel Loop-Based Cell Elements. 5.7 Conclusion. References. 6 Reconfigurable Microstrip Antennas (Jennifer T. Bernhard). 6.1 Introduction. 6.2 Substrate Modification for Reconfigurability. 6.3 Conductor Modification for Reconfigurability. 6.4 Enabling Reconfigurability: Considerations for Reconfiguration Mechanisms. 6.5 Future Trends in Reconfigurable Microstrip Antenna Research and Development. References. 7 Wearable Antennas for Body Area Networks (Peter S. Hall and Yang Hao). 7.1 Introduction. 7.2 Sources on the Human Body. 7.3 Narrowband Antennas. 7.4 Fabric Antennas. 7.5 Ultra Wideband Antennas. 7.6 Multiple Antenna Systems. 7.7 Conclusion. References. 8 Printed Antennas for Wireless Communications (Satish K. Sharma and Lotfollah Shafai). 8.1 Introduction. 8.2 Broadband Microstrip Patch Antennas. 8.3 Patch Antennas for Multiband Wireless Communications. 8.4 Enhanced Gain Patch Antennas. 8.5 Wideband Compact Patch Antennas. 8.6 Microstrip Slot Antennas. 8.7 Microstrip Planar Monopole Antenna. References. 9 UHF Passive RFID Tag Antennas (Daniel Deavours and Daniel Dobkin). 9.1 Introduction. 9.2 Application Requirements. 9.3 Approaches. 9.4 Fabrication. 9.5 Conclusion. References. 10 Printed UWB Antennas (Zhi Ning Chen, Xianming Qing and Shie Ping See). 10.1 Introduction. 10.2 Swan Antenna with Reduced Ground Plane Effect. 10.3 Slim UWB Antenna. 10.4 Diversity Antenna. 10.5 Printed Slot UWB Antenna and Band-Notched Solutions. References. 11 Metamaterial Antennas and Radiative Systems (Christophe Caloz). 11.1 Introduction. 11.2 Fundamentals of Metamaterials. 11.3 Leaky-Wave Antennas. 11.4 Resonant Antennas. 11.5 Exotic Radiative Systems. References. 12 Defected Ground Structure for Microstrip Antennas (Debatosh Guha, Sujoy Biswas, and Yahia M. M. Antar). 12.1 Introduction. 12.2 Fundamentals of DGS. 12.3 DGS for controlling Microstrip Antenna Feeds and Front-End Characteristics. 12.4 DGS to Control/Improve Radiation Properties of Microstrip Patch Antennas. 12.5 DGS for Reduced Mutual Coupling between Microstrip Array Elements and Associated Improvements. 12.6 Conclusion. Appendix: A Brief DGS Chronology. References. 13 Printed Leaky Wave Antennas (Samir F. Mahmoud and Yahia M. M. Antar). 13.1 Introduction. 13.2 The Leaky Wave as a Complex Plane Wave. 13.3 Radiation Pattern of a Leaky Wave. 13.4 Examples of Leaky Mode Supporting Structures. 13.5 The Excitation Problem. 13.6 Two-Dimensional Leaky Waves. 13.7 Further Advances on a Class of Periodic Leaky Wave Antennas. References. Appendix I Preliminary Ideas: PTFE-Based Microwave Lamiantes and Making Prototypes. Appendix II Preliminary Ideas: Microwave Connectors for Printed Circuits and Antennas. Index.

260 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of defected ground structure (DGS) on cross-polarized (XP) electric fields and associated radiations and found that the arc-DGS appears to be highly efficient in terms of suppressing XP fields.
Abstract: Experiments with probe-fed circular patches using conventional and defected ground planes flashed some interesting features relating to cross-polarized (XP) electric fields and associated radiations before the present authors. Those led to a series of new investigations for understanding the nature of XP fields and to deal with them using defected ground structure (DGS) for improved XP performance. In the first phase of investigation, the XP radiations of a probe-fed circular patch with conventional ground plane have been critically studied as a function of the radial probe location. Remarkably significant effect is experimentally demonstrated. New information about orthogonal resonant fields and its importance in designing an antenna is provided. In the second phase of investigation, limitations of dot-shaped DGS in reducing XP level are experimentally studied. As its improved variants, two new DGS geometries such as annular ring and circular arcs have been explored. The arc-DGS appears to be highly efficient in terms of suppressing XP fields. Suppression by 10-12 dB has been experimentally demonstrated. Each design has been experimented in both C- and X-bands to earn confidence on the measured data.

114 citations

Journal ArticleDOI
TL;DR: In this paper, the application of defected ground structure (DGS) to suppress cross-polarized (XP) radiation from a microstrip patch antenna has been reinvestigated using a new DGS geometry for much improved characteristics.
Abstract: Application of defected ground structure (DGS) to suppress cross-polarized (XP) radiation from a microstrip patch antenna has been reinvestigated using a new DGS geometry for much improved characteristics. Arc-shaped defect has been used in pair, symmetrically located under a circular patch. A number of optimization parameters have been examined using simulated results, leading to a design indicating improved XP behavior. A set of identical prototypes, with and without DGS, have been experimentally studied. The presence of the DGS shows as much as 30 dB isolation of the XP level from its peak radiation, and that compared to an identical patch without DGS indicates an improvement by as much as 12 dB. The relative suppression in XP values are found to be around 7-12 dB over ±75° elevation around the boresight of the patch.

82 citations