scispace - formally typeset

Journal ArticleDOI

Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800

AbstractFor joining type 316LN austenitic stainless steel to modified 9Cr–1Mo steel for power plant application, a trimetallic configuration using an insert piece (such as alloy 800) of intermediate thermal coefficient of expansion (CTE) has been sometimes suggested for bridging the wide gap in CTE between the two steels. Two joints are thus involved and this paper is concerned with the weld between 316LN and alloy 800. These welds were produced using three types of filler materials: austenitic stainless steels corresponding to 316, 16Cr–8Ni–2Mo, and the nickel-base Inconel 182 1 . The weld fusion zones and the interfaces with the base materials were characterised in detail using light and transmission electron microscopy. The 316 and Inconel 182 weld metals solidified dendritically, while the 16–8–2 (16%Cr–8%Ni–2%Mo) weld metal showed a predominantly cellular substructure. The Inconel weld metal contained a large number of inclusions when deposited from flux-coated electrodes, but was relatively inclusion-free under inert gas-shielded welding. Long-term elevated-temperature aging of the weld metals resulted in embrittling sigma phase precipitation in the austenitic stainless steel weld metals, but the nickel-base welds showed no visible precipitation, demonstrating their superior metallurgical stability for high-temperature service.

...read more


Citations
More filters
Journal ArticleDOI
Abstract: The current work was carried out to characterize welding of AISI 310 austenitic stainless steel to Inconel 657 nickel–chromium superalloy. The welds were produced using four types of filler materials; the nickel-based corresponding to Inconel 82, Inconel A, Inconel 617 and 310 austenitic stainless steels. This paper describes the selection of welding consumables for the joint. The comparative evaluation was based on hot-cracking tests (Varestraint test) and estimation of mechanical properties. According to Varestraint tests, Inconel A showed the least susceptibility to hot cracking. In tension tests, all weldments failed in the weaker parent metals (i.e., Inconel 657). Moreover, Inconel A weldment had the highest strength and total elongation. On the other hand, the weld metals failed by ductile fracture except Inconel 617, which exhibited mixed fracture mode. At last, it was concluded that Inconel A filler material offered the best compromise for the joint between Inconel 657 and 310 stainless steel.

185 citations

Journal ArticleDOI
Abstract: In several locations of pressurized water reactors, dissimilar metal welds using Inconel welding wires are used to join the low alloy steel components to stainless-steel pipes. Because of the existence of different materials and chemistry variation within welds, mechanical properties, such as tensile and fracture properties, are expected to show spatial variation. For design and integrity assessment of the dissimilar welds, these variations should be evaluated. In this study, dissimilar metal welds composed of low alloy steel, Inconel 82/182 weld, and stainless steel were prepared by gas tungsten arc welding and shielded metal arc welding techniques. Microstructures were observed using optical and electron microscopes. Typical dendrite structures were observed in Inconel 82/182 welds. Tensile tests using standard and mini-sized specimens and micro-hardness tests were conducted to measure the variation in strength along the thickness of the weld as well as across the weld. In addition, fracture toughness specimens were taken at the bottom, middle, and top of the welds and tested to evaluate the spatial variation along the thickness. It was found that while the strength is about 50–70 MPa greater at the bottom of the weld than at the top of the weld, fracture toughness values at the top of the weld are about 70% greater than those at the bottom of the weld.

120 citations


Cites background from "Microstructural features of dissimi..."

  • ...The recrystallized features with extensive grain boundary migration [5] shown in Fig....

    [...]

  • ...Therefore, it is anticipated that large number of fine inclusions are present the Inconel 182 weld metal as reported by Sireesha [5]....

    [...]

Journal ArticleDOI
Abstract: The joint of dissimilar metals between 2205 duplex stainless steel and 16MnR low alloy high strength steel are welded by tungsten inert gas arc welding (GTAW) and shielded metal arc welding (SMAW) respectively. The microstructures of welded joints are investigated using scanning electron microscope, optical microscope and transmission electron microscopy respectively. The relationship between mechanical properties, corrosion resistance and microstructure of welded joints is evaluated. Results indicate that there are a decarburized layer and an unmixed zone close to the fusion line. It is also indicated that, austenite and acicular ferrite structures distribute uniformly in the weld metal, which is advantageous for better toughness and ductility of joints. Mechanical properties of joints welded by the two kinds of welding technology are satisfied. However, the corrosion resistance of the weldment produced by GTAW is superior to that by SMAW in chloride solution. Based on the present work, it is concluded that GTAW is the suitable welding procedure for joining dissimilar metals between 2205 duplex stainless steel and 16MnR.

119 citations

Journal ArticleDOI
Abstract: In the present study, dissimilar welding between Inconel 718 nickel-base superalloy and 310S austenitic stainless steel using gas tungsten arc welding process was performed to determine the relationship between the microstructure of the welds and the resultant mechanical and corrosion properties. For this purpose, three filler metals including Inconel 625, Inconel 82 and 310 stainless steel were used. Microstructural observations showed that weld microstructures for all filler metals were fully austenitic. In tension tests, welds produced by Inconel 625 and 310 filler metals displayed the highest and the lowest ultimate tensile strength, respectively. The results of Charpy impact tests indicated that the maximum fracture energy was related to Inconel 82 weld metal. According to the potentiodynamic polarization test results, Inconel 82 exhibited the highest corrosion resistance among all tested filler metals. Finally, it was concluded that for the dissimilar welding between Inconel 718 and 310S, Inconel 82 filler metal offers the optimum properties at room temperature.

110 citations

Journal ArticleDOI
Abstract: The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.

78 citations


References
More filters
Book
01 Oct 1988
Abstract: Contents: Significance of Constitution Diagrams for the Understanding of Welding Phenomena * Metallurgical Processes During Solidification and Cooling in Stainless Steel Weld Metal * Metallurgical Phenomena in Secondary Crystallization of Stainless Steels and Weld Metals * Precipitation Phenomena in Stainless Steel and Weld Metals * Hot Cracking Resistance During the Welding of Austenitic Stainless Steels * Welding Metallurgy of Ferritic Stainless Chromium Steels with Carbon Contents Below 0.15 per cent * Welding Metallurgy of Low Carbon Chromium-Nickel Martensitic Stainless Steels (Soft Martensitic Steels) * Welding Metallurgy of Duplex Austenitic-Ferritic Stainless Steels * Welding Metallurgy of Austenitic Stainless Steels * General Instructions for the Welding and Post-Weld Surface Treatments of Fabrications and Welded Components Made from Austenitic Stainless Steel * Welding Metallurgy of Heat Resisting Steels * Welding Metallurgy of Austenitic-Ferritic Dissimilar Joints * Appendix: Abbreviations and Short Designations * References * Author Index * Subject Index.

387 citations

Journal ArticleDOI
Abstract: Transition joints in power plants between ferritic steels and austenitic stainless steels suffer from a mismatch in coefficients of thermal expansion (CTE) and the migration of carbon during service from the ferritic to the austenitic steel. To overcome these, nickel-based consumables are commonly used. The use of a trimetallic combination with an insert piece of intermediate CTE provides for a more effective lowering of thermal stresses. The current work envisages a trimetallic joint involving modified 9Cr–1Mo steel and 316LN austenitic stainless steel as the base materials and Alloy 800 as the intermediate piece. Of the two joints involved, this paper describes the choice of welding consumables for the joint between Alloy 800 and 316LN. Four consumables were examined: 316, 16-8-2, Inconel 82 and Inconel 182. The comparative evaluation was based on hot cracking tests and estimation of mechanical properties and coefficient of thermal expansion. While 16-8-2 exhibited highest resistance to solidification cracking, the Inconel filler materials also showed adequate resistance; additionally, the latter were superior from the mechanical property and coefficient of thermal expansion view-points. It is therefore concluded that for the joint between Alloy 800 and 316LN the Inconel filler materials offer the best compromise.

131 citations

Journal ArticleDOI
Abstract: To an increasing extent the wide range of fundamental knowledge of solidification processes is being applied to the study of fusion-weld solidification. Initially this fundamental knowledge is surveyed concisely and those areas of particular importance to weld-pool solidification are indentified. This is followed by an examination of phenomenological studies of the solidification behaviour of fusion welds in which particular attention is given to factors influencing the development of the fusion-zone structure. Then, the ways in which the metallurgical structure of the fusion zone influences the mechanical properties of the weldment are reviewed. Attention is then given to methods of controlling the fusion-zone structure by using inoculants, stimulated surface nucleation, dynamic grain refinement, and arc modulation. The gains and advantages which accrue from the way in which structure control affects properties are then considered. The review concludes with a discussion of likely future developme...

106 citations

Journal ArticleDOI
Abstract: Cracking, or disbonding, along the fusion boundary in dissimilar metal welds has been a persistent problem, particularly in applications where austenitic alloys are clad on to structural steels for corrosion protection. Many failures in dissimilar metal welds occur as a result of cracking along a boundary that runs parallel to the fusion boundary in the adjacent weld metal. A preliminary investigation was undertaken to determine the nature and evolution of boundaries and structure in dissimilar metal welds using a simple ternary system composed of a pure iron substrate and a 70Ni–30Cu (Monel) filler metal. Changes in base metal dilution were found to alter the evolution of boundaries and structures near the fusion boundary dramatically. Optical metallography and electron microanalysis reveal that the resulting weld microstructures and boundaries are similar to those observed in engineering materials used for cladding and corrosion resistant overlay. Transmission electron diffraction analysis revea...

55 citations

Journal ArticleDOI
Abstract: A series of laser and gas tungsten arc welds traversing stainless steels of different chemical compositions has been studied, to elucidate the role of austenite or ferrite nucleation and cooling rate on solidification behaviour. It has been found that a steel with a high CrEQ/NiEQ ratio can be induced to solidify as metastable austenite by initiating the weld in a steel with a lower CrEQ/NiEQ ratio in which the thermodynamically stable solidification mode is austenitic. The austenite dendrites are then found to continue growth across the weld junction into the undiluted regions of the high CrEQ/NiEQ ratio material. By providing austenite particles in this way, nucleation is rendered unnecessary and it is found that solidification to metastable austenite can be induced at cooling rates significantly lower than previously encountered. The results of these and other experiments in which the welding speed was changed during the experiment are interpreted to yield new information about the mechanisms o...

34 citations