scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800

TL;DR: In this article, the weld fusion zones and the interfaces with the base materials were characterised in detail using light and transmission electron microscopy, showing that the stainless steel weld metals solidified dendritically, while the 16-8-2 (16%Cr-8%Ni-2%Mo) weld metal showed a predominantly cellular substructure.
Abstract: For joining type 316LN austenitic stainless steel to modified 9Cr–1Mo steel for power plant application, a trimetallic configuration using an insert piece (such as alloy 800) of intermediate thermal coefficient of expansion (CTE) has been sometimes suggested for bridging the wide gap in CTE between the two steels. Two joints are thus involved and this paper is concerned with the weld between 316LN and alloy 800. These welds were produced using three types of filler materials: austenitic stainless steels corresponding to 316, 16Cr–8Ni–2Mo, and the nickel-base Inconel 182 1 . The weld fusion zones and the interfaces with the base materials were characterised in detail using light and transmission electron microscopy. The 316 and Inconel 182 weld metals solidified dendritically, while the 16–8–2 (16%Cr–8%Ni–2%Mo) weld metal showed a predominantly cellular substructure. The Inconel weld metal contained a large number of inclusions when deposited from flux-coated electrodes, but was relatively inclusion-free under inert gas-shielded welding. Long-term elevated-temperature aging of the weld metals resulted in embrittling sigma phase precipitation in the austenitic stainless steel weld metals, but the nickel-base welds showed no visible precipitation, demonstrating their superior metallurgical stability for high-temperature service.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the microstructure and corresponding mechanical characteristics of P91 and Incoloy 800HT dissimilar welded joint (DWJ) were analyzed in as-welded (AW) and postweld heat treatment (PWHT) conditions.
Abstract: The presented study intends to analyze the microstructure and corresponding mechanical characteristics of P91 and Incoloy 800HT dissimilar welded joint (DWJ). The thermo-physical property differences between P91 and Incoloy 800HT arise due to their complex alloying composition, making their weldability difficult. Incoloy 800HT is difficult to weld due to its high susceptibility to solidification cracking. The recommended nickel-based filler metals for welding Incoloy 800HT were employed to weld P91 and Incoloy 800HT using conventional gas tungsten arc welding (GTAW). The welded joint morphology and characteristics were analyzed in as-welded (AW) and post-weld heat treatment (PWHT) conditions. The PWHT was performed to observe changes in microstructural inhomogeneity and residual stress relaxation in weld after the heat treatment. An electron probe microanalyzer (EPMA) was utilized to observe the distribution and segregation of elements in different weld regions. The deep hole drill technique was employed to find the distribution of bi-axial residual stresses in the weld fusion zone (WFZ) and heat-affected zone (HAZ) of base metals in both AW and PWHT conditions. The two nickel-based fillers, ERNiCr-3 and ERNiCrMo-3, were employed, and their weld characteristics were compared. The mechanical strength of ERNiCr-3 filler-based DWJ was found superior to ERNiCrMo-3 filler-based DWJ. The standard AW and PWHT ERNiCr-3 filler-based DWJ tensile specimen failed from Incoloy 800HT base metal with an ultimate tensile strength (UTS) of 570 ± 4 MPa and 650 ± 4 MPa, respectively. The ERNiCrMo-3 filler-based DWJ obtained the highest UTS of 679 MPa after PWHT in a subsize specimen. The microhardness for ERNiCrMo-3 WFZ was found to be higher than ERNiCr-3 WFZ microhardness, and PWHT successfully tempered the P91 HAZ. Further, the impact toughness for the ERNiCr-3 WFZ in AW condition was 86 ± 3 J and PWHT did not provide any significant improvements, while ERNiCrMo-3 WFZ had an impact toughness of 47 ± 10 J in AW state and 41 ± 10 J in PWHT state. Thus, a successful weld characteristic study of defect-free P91 and Incoloy 800HT DWJ was completed, and ERNiCr-3 filler was concluded to be an optimum choice of filler to make the DWJ between P91 and Incoloy 800HT.

18 citations

Journal ArticleDOI
TL;DR: In this paper, the structure-property relationships of Incoloy 825 weldments were investigated using optical microscopy, X-ray diffraction analysis, and scanning electron microscopy equipped with energy dispersive spectroscopy.
Abstract: This work deals with an investigation on the structure–property relationships of Incoloy 825 weldments. Incoloy 825 was successfully welded using gas tungsten arc welding and different filler wires. Interfacial and weld zone microstructures were characterized by optical microscopy, X-ray diffraction analysis, and scanning electron microscopy equipped with energy dispersive spectroscopy. Micro-hardness, tensile and Charpy impact tests were also conducted for the evaluation of the mechanical properties of the weldments. Ti-rich and Nb-rich phases were identified in the inter-dendritic regions of the weld metals. In the heat-affected zone of the weldments, grain growth and grain boundary thickening were observed. All the weldments displayed the ductile mode of fractures. ERNiCrMo-3 showed higher hardness, better toughness and tensile properties than the other weld metals. In addition, ERNiCrMo-3 indicated a higher impact resistance (112 J) compared to the base metal (94 J). Thus, ERNiCrMo-3 filler wire was recommended for welding alloy 825.

18 citations


Cites background from "Microstructural features of dissimi..."

  • ...This phenomenon is well known in alloy 800 HAZ so that Ti at these boundaries not only lowers the melting point constitutionally but also forms low-melting carbide–austenite eutectics during solidification [29]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the weldability of Super Ni 718 alloy and AISI 316L using gas tungsten arc (GTA) welding process using three different filler wires, such as ER2594, ERNiCrMo-4 and ERNiCoMo-1, was investigated.
Abstract: The present investigation addressed the weldability of Super Ni 718 alloy and AISI 316L using gas tungsten arc (GTA) welding process using three different filler wires, such as ER2594, ERNiCrMo-4 and ERNiCrCoMo-1. Interface microstructures showed the formation of secondary phases at the heat-affected zone (HAZ) of Super Ni 718 alloy and delta ferrite colonies at the HAZ of AISI 316L. It was witnessed from the weld microstructures that the deleterious phases were suppressed or controlled while using these filler wires for joining the bimetals. Tensile results corroborated that the failure occurred at the parent metal of AISI 316L in all the cases. The presence of microvoids and dimples characterized for the ductile mode of fracture in these weldments. Charpy V-notch test results showed that the weldments using ERNiCrMo-4 filler exhibited higher impact energy. A detailed study has been made to investigate the structure–property relationships of these weldments using optical and scanning electron microscopic techniques.

17 citations

Journal ArticleDOI
TL;DR: In this article, the effect of different activating flux such as V2O5, TiO2, MoO3, Cr2O3 and Al2O2 on the A-TIG welding process of Incoloy 800H was investigated.
Abstract: Abstract This study investigates the effect of different activating flux such as V2O5, TiO2, MoO3, Cr2O3, and Al2O3 on A-TIG welding process of Incoloy 800H. The influence of the flux on the depth of penetration and on mechanical and metallurgical characteristics of the weld were studied and compared with autogeneous TIG welds which were welded with the same process parameters and conditions. The use of TiO2 flux gave full depth of penetration and the use of V2O5, Cr2O3 flux gave increased penetration as compared to autogeneous TIG welds while the use of Al2O3 and MoO3 led to the detoriation of the effect.

17 citations

Journal ArticleDOI
TL;DR: In this paper, the viability of dissimilar UNS S31603 austenitic and superduplex stainless steels joined by friction stir welding was verified using a PCBN-WRe tool.
Abstract: In order to verify the viability of dissimilar UNS S31603 austenitic and UNS S32750 superduplex stainless steels joined by friction stir welding, 6-mm-thick plates were welded using a PCBN-WRe tool. The welded joints were performed in position control mode at rotational speeds of 100 to 300 rpm and a feed rate of 100 mm/min. The joints performed with 150 and 200 rpm showed good appearance and no defects. The metallographic analysis of both joints showed no internal defects and that the material flow pattern is visible only in the stirred zone (SZ) of the superduplex steel. On the SZ top, these patterns are made of regions of different phases (ferrite and austenite), and on the bottom and central part of the SZ, these patterns are formed by alternated regions of different grain sizes. The ferrite grains in the superduplex steel are larger than those in the austenitic ones along the SZ and thermo-mechanically affected zone, explained by the difference between austenite and ferrite recrystallization kinetics. The amount of ferrite islands present on the austenitic steel base metal decreased near the SZ interface, caused by the dissolving of the ferrite in austenitic matrix. No other phases were found in both joints. The best weld parameters were found to be 200 rpm rotation speed, 100 mm/min feed rate, and tool position control.

16 citations

References
More filters
Book
01 Oct 1988
TL;DR: In this article, the importance of the Constitution diagram for the understanding of Welding Phenomena is discussed, and a detailed description of the Welding and post-weld surface treatment of Fabrications and Welded Components made from Austenitic Stainless Steels is given.
Abstract: Contents: Significance of Constitution Diagrams for the Understanding of Welding Phenomena * Metallurgical Processes During Solidification and Cooling in Stainless Steel Weld Metal * Metallurgical Phenomena in Secondary Crystallization of Stainless Steels and Weld Metals * Precipitation Phenomena in Stainless Steel and Weld Metals * Hot Cracking Resistance During the Welding of Austenitic Stainless Steels * Welding Metallurgy of Ferritic Stainless Chromium Steels with Carbon Contents Below 0.15 per cent * Welding Metallurgy of Low Carbon Chromium-Nickel Martensitic Stainless Steels (Soft Martensitic Steels) * Welding Metallurgy of Duplex Austenitic-Ferritic Stainless Steels * Welding Metallurgy of Austenitic Stainless Steels * General Instructions for the Welding and Post-Weld Surface Treatments of Fabrications and Welded Components Made from Austenitic Stainless Steel * Welding Metallurgy of Heat Resisting Steels * Welding Metallurgy of Austenitic-Ferritic Dissimilar Joints * Appendix: Abbreviations and Short Designations * References * Author Index * Subject Index.

394 citations

Journal ArticleDOI
TL;DR: In this article, a trimetallic joint involving modified 9Cr-1Mo steel and 316LN austenitic stainless steel as the base materials and Alloy 800 as the intermediate piece was investigated.

150 citations

Journal ArticleDOI
TL;DR: In this paper, a wide range of fundamental knowledge of solidification processes is applied to the study of fusion-weld solidification, including inoculants, stimulated surface nucleation, dynamic grain refinement, and arc modulation.
Abstract: To an increasing extent the wide range of fundamental knowledge of solidification processes is being applied to the study of fusion-weld solidification. Initially this fundamental knowledge is surveyed concisely and those areas of particular importance to weld-pool solidification are indentified. This is followed by an examination of phenomenological studies of the solidification behaviour of fusion welds in which particular attention is given to factors influencing the development of the fusion-zone structure. Then, the ways in which the metallurgical structure of the fusion zone influences the mechanical properties of the weldment are reviewed. Attention is then given to methods of controlling the fusion-zone structure by using inoculants, stimulated surface nucleation, dynamic grain refinement, and arc modulation. The gains and advantages which accrue from the way in which structure control affects properties are then considered. The review concludes with a discussion of likely future developme...

119 citations

Journal ArticleDOI
TL;DR: In this paper, a ternary system composed of a pure iron substrate and a 70Ni-30Cu filler metal was used to determine the nature and evolution of boundaries and structure in dissimilar metal welds.
Abstract: Cracking, or disbonding, along the fusion boundary in dissimilar metal welds has been a persistent problem, particularly in applications where austenitic alloys are clad on to structural steels for corrosion protection. Many failures in dissimilar metal welds occur as a result of cracking along a boundary that runs parallel to the fusion boundary in the adjacent weld metal. A preliminary investigation was undertaken to determine the nature and evolution of boundaries and structure in dissimilar metal welds using a simple ternary system composed of a pure iron substrate and a 70Ni–30Cu (Monel) filler metal. Changes in base metal dilution were found to alter the evolution of boundaries and structures near the fusion boundary dramatically. Optical metallography and electron microanalysis reveal that the resulting weld microstructures and boundaries are similar to those observed in engineering materials used for cladding and corrosion resistant overlay. Transmission electron diffraction analysis revea...

63 citations

Journal ArticleDOI
TL;DR: In this article, a series of laser and gas tungsten arc welds traversing stainless steels of different chemical compositions has been studied, to elucidate the role of austenite or ferrite nucleation and cooling rate on solidification behaviour.
Abstract: A series of laser and gas tungsten arc welds traversing stainless steels of different chemical compositions has been studied, to elucidate the role of austenite or ferrite nucleation and cooling rate on solidification behaviour. It has been found that a steel with a high CrEQ/NiEQ ratio can be induced to solidify as metastable austenite by initiating the weld in a steel with a lower CrEQ/NiEQ ratio in which the thermodynamically stable solidification mode is austenitic. The austenite dendrites are then found to continue growth across the weld junction into the undiluted regions of the high CrEQ/NiEQ ratio material. By providing austenite particles in this way, nucleation is rendered unnecessary and it is found that solidification to metastable austenite can be induced at cooling rates significantly lower than previously encountered. The results of these and other experiments in which the welding speed was changed during the experiment are interpreted to yield new information about the mechanisms o...

37 citations