scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Microstructure-dependent couple stress theories of functionally graded beams

J. N. Reddy1
01 Nov 2011-Journal of The Mechanics and Physics of Solids (Pergamon)-Vol. 59, Iss: 11, pp 2382-2399
TL;DR: In this article, a microstructure-dependent nonlinear Euler-Bernoulli and Timoshenko beam theory was proposed to account for through-thickness power-law variation of a two-constituent material.
Abstract: A microstructure-dependent nonlinear Euler–Bernoulli and Timoshenko beam theories which account for through-thickness power-law variation of a two-constituent material are developed using the principle of virtual displacements. The formulation is based on a modified couple stress theory, power-law variation of the material, and the von Karman geometric nonlinearity. The model contains a material length scale parameter that can capture the size effect in a functionally graded material, unlike the classical Euler–Bernoulli and Timoshenko beam theories. The influence of the parameter on static bending, vibration and buckling is investigated. The theoretical developments presented herein also serve to develop finite element models and determine the effect of the geometric nonlinearity and microstructure-dependent constitutive relations on post-buckling response.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a higher-order non-local strain gradient elasticity model is proposed, which is based on the nonlocal effects of the strain field and first gradient strain field.
Abstract: In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed It is based on the nonlocal effects of the strain field and first gradient strain field This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational approach Two additional kinds of parameters, the higher-order nonlocal parameters and the nonlocal gradient length coefficients are introduced to account for the size-dependent characteristics of nonlocal gradient materials at nanoscale To illustrate its application values, the theory is applied for wave propagation in a nonlocal strain gradient system and the new dispersion relations derived are presented through examples for wave propagating in Euler–Bernoulli and Timoshenko nanobeams The numerical results based on the new nonlocal strain gradient theory reveal some new findings with respect to lattice dynamics and wave propagation experiment that could not be matched by both the classical nonlocal stress model and the contemporary strain gradient theory Thus, this higher-order nonlocal strain gradient model provides an explanation to some observations in the classical and nonlocal stress theories as well as the strain gradient theory in these aspects

1,085 citations

Journal ArticleDOI
Huu-Tai Thai1
TL;DR: In this paper, a nonlocal shear deformation beam theory is proposed for bending, buckling, and vibration of nanobeams using the nonlocal differential constitutive relations of Eringen.

459 citations

Journal ArticleDOI
TL;DR: In this article, a non-classical microbeam model incorporating the material length scale parameter was proposed to capture the size effect of the FG microbeams and the governing equations and the related boundary conditions were derived using Hamilton's principle.

424 citations

Journal ArticleDOI
TL;DR: In this article, a size-dependent Timoshenko beam model, which accounts for through-thickness power-law variation of a two-constituent functionally graded (FG) material, is derived in the framework of the nonlocal strain gradient theory.

349 citations

Journal ArticleDOI
TL;DR: In this article, the vibration response of non-homogenous and non-uniform microbeams is investigated in conjunction with Bernoulli-Euler beam and modified couple stress theory, where boundary conditions of the microbeam are considered as fixed at one end and free at the other end.

321 citations

References
More filters
Book
J. N. Reddy1
19 Nov 1996
TL;DR: The use of composite materials in engineering structures continues to increase dramatically, and there have been significant advances in modeling for general and composite materials and structures in particular as discussed by the authors. But the use of composites is not limited to the aerospace domain.
Abstract: The use of composite materials in engineering structures continues to increase dramatically, and there have been equally significant advances in modeling for general and composite materials and structures in particular. To reflect these developments, renowned author, educator, and researcher J.N. Reddy created an enhanced second edit

5,301 citations

Journal ArticleDOI
TL;DR: In this article, the integropartial differential equations of the linear theory of nonlocal elasticity are reduced to singular partial differential equations for a special class of physically admissible kernels.
Abstract: Integropartial differential equations of the linear theory of nonlocal elasticity are reduced to singular partial differential equations for a special class of physically admissible kernels. Solutions are obtained for the screw dislocation and surface waves. Experimental observations and atomic lattice dynamics appear to support the theoretical results very nicely.

3,929 citations

Book
01 Jan 2004
TL;DR: In this article, the authors present an analysis of the properties of composite materials using the classical and first-order theories of Laminated Composite Plates and shells, as well as a detailed analysis of their properties.
Abstract: Equations of Anisotropic Elasticity, Virtual Work Principles, and Variational Methods Fiber-Reinforced Composite Materials Mathematical Preliminaries Equations of Anisotropic Entropy Virtual Work Principles Variational Methods Summary Introduction to Composite Materials Basic Concepts and Terminology Constitutive Equations of a Lamina Transformation of Stresses and Strains Plan Stress Constitutive Relations Classical and First-Order Theories of Laminated Composite Plates Introduction An Overview of Laminated Plate Theories The Classical Laminated Plate Theory The First-Order Laminated Plate Theory Laminate Stiffnesses for Selected Laminates One-Dimensional Analysis of Laminated Composite Plates Introduction Analysis of Laminated Beams Using CLPT Analysis of Laminated Beams Using FSDT Cylindrical Bending Using CLPT Cylindrical Bending Using FSDT Vibration Suppression in Beams Closing Remarks Analysis of Specially Orthotropic Laminates Using CLPT Introduction Bending of Simply Supported Rectangular Plates Bending of Plates with Two Opposite Edges Simply Supported Bending of Rectangular Plates with Various Boundary Conditions Buckling of Simply Supported Plates Under Compressive Loads Buckling of Rectangular Plates Under In-Plane Shear Load Vibration of Simply Supported Plates Buckling and Vibration of Plates with Two Parallel Edges Simply Supported Transient Analysis Closure Analytical Solutions of Rectangular Laminated Plates Using CLPT Governing Equations in Terms of Displacements Admissible Boundary Conditions for the Navier Solutions Navier Solutions of Antisymmetric Cross-Ply Laminates Navier Solutions of Antisymmetric Angle-Ply Laminates The Levy Solutions Analysis of Midplane Symmetric Laminates Transient Analysis Summary Analytical Solutions of Rectangular Laminated Plates Using FSDT Introduction Simply Supported Antisymmetric Cross-Ply Laminated Plates Simply Supported Antisymmetric Angle-Ply Laminated Plates Antisymmetric Cross-Ply Laminates with Two Opposite Edges Simply Supported Antisymmetric Angle-Ply Laminates with Two Opposite Edges Simply Supported Transient Solutions Vibration Control of Laminated Plates Summary Theory and Analysis of Laminated Shells Introduction Governing Equations Theory of Doubly-Curved Shell Vibration and Buckling of Cross-Ply Laminated Circular Cylindrical Shells Linear Finite Element Analysis of Composite Plates and Shells Introduction Finite Element Models of the Classical Plate Theory (CLPT) Finite Element Models of Shear Deformation Plate Theory (FSDT) Finite Element Analysis of Shells Summary Nonlinear Analysis of Composite Plates and Shells Introduction Classical Plate Theory First-Order Shear Deformation Plate Theory Time Approximation and the Newton-Raphson Method Numerical Examples of Plates Functionally Graded Plates Finite Element Models of Laminated Shell Theory Continuum Shell Finite Element Postbuckling Response and Progressive Failure of Composite Panels in Compression Closure Third-Order Theory of Laminated Composite Plates and Shells Introduction A Third-Order Plate Theory Higher-Order Laminate Stiffness Characteristics The Navier Solutions Levy Solutions of Cross-Ply Laminates Finite Element Model of Plates Equations of Motion of the Third-Order Theory of Doubly-Curved Shells Layerwise Theory and Variable Kinematic Model Introduction Development of the Theory Finite Element Model Variable Kinematic Formulations Application to Adaptive Structures Layerwise Theory of Cylindrical Shell Closure Subject Index

3,457 citations

Journal ArticleDOI
TL;DR: In this paper, an equilibrium relation is developed to govern the behavior of the couples, which constrained the couple stress tensor to be symmetric, and the symmetric curvature tensor became the only properly conjugated high order strain measures in the theory to have a real contribution to the total strain energy of the system.

2,725 citations

Journal ArticleDOI
TL;DR: In this paper, a new set of higher-order metrics is developed to characterize strain gradient behaviors in small-scale structures and a strain gradient elastic bending theory for plane-strain beams is developed.
Abstract: Conventional strain-based mechanics theory does not account for contributions from strain gradients. Failure to include strain gradient contributions can lead to underestimates of stresses and size-dependent behaviors in small-scale structures. In this paper, a new set of higher-order metrics is developed to characterize strain gradient behaviors. This set enables the application of the higher-order equilibrium conditions to strain gradient elasticity theory and reduces the number of independent elastic length scale parameters from five to three. On the basis of this new strain gradient theory, a strain gradient elastic bending theory for plane-strain beams is developed. Solutions for cantilever bending with a moment and line force applied at the free end are constructed based on the new higher-order bending theory. In classical bending theory, the normalized bending rigidity is independent of the length and thickness of the beam. In the solutions developed from the higher-order bending theory, the normalized higher-order bending rigidity has a new dependence on the thickness of the beam and on a higher-order bending parameter, bh. To determine the significance of the size dependence, we fabricated micron-sized beams and conducted bending tests using a nanoindenter. We found that the normalized beam rigidity exhibited an inverse squared dependence on the beam's thickness as predicted by the strain gradient elastic bending theory, and that the higher-order bending parameter, bh, is on the micron-scale. Potential errors from the experiments, model and fabrication were estimated and determined to be small relative to the observed increase in beam's bending rigidity. The present results indicate that the elastic strain gradient effect is significant in elastic deformation of small-scale structures.

2,466 citations