scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Microwave photonics with superconducting quantum circuits

30 Nov 2017-Physics Reports (North-Holland)-Vol. 718, pp 1-102
TL;DR: In the past 20 years, impressive progress has been made both experimentally and theoretically in superconducting quantum circuits, which provide a platform for manipulating microwave photons as mentioned in this paper, and many higher-order effects, unusual and less familiar in traditional cavity quantum electrodynamics with natural atoms, have been experimentally observed.
About: This article is published in Physics Reports.The article was published on 2017-11-30 and is currently open access. It has received 909 citations till now. The article focuses on the topics: Cavity quantum electrodynamics & Quantum optics.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide an introductory guide to the central concepts and challenges in the rapidly accelerating field of superconducting quantum circuits, including qubit design, noise properties, qubit control and readout techniques.
Abstract: The aim of this review is to provide quantum engineers with an introductory guide to the central concepts and challenges in the rapidly accelerating field of superconducting quantum circuits. Over the past twenty years, the field has matured from a predominantly basic research endeavor to a one that increasingly explores the engineering of larger-scale superconducting quantum systems. Here, we review several foundational elements—qubit design, noise properties, qubit control, and readout techniques—developed during this period, bridging fundamental concepts in circuit quantum electrodynamics and contemporary, state-of-the-art applications in gate-model quantum computation.

969 citations

Journal ArticleDOI
TL;DR: The time is ripe for describing some of the recent development of superconducting devices, systems and applications as well as practical applications of QIP, such as computation and simulation in Physics and Chemistry.
Abstract: During the last ten years, superconducting circuits have passed from being interesting physical devices to becoming contenders for near-future useful and scalable quantum information processing (QIP). Advanced quantum simulation experiments have been shown with up to nine qubits, while a demonstration of quantum supremacy with fifty qubits is anticipated in just a few years. Quantum supremacy means that the quantum system can no longer be simulated by the most powerful classical supercomputers. Integrated classical-quantum computing systems are already emerging that can be used for software development and experimentation, even via web interfaces. Therefore, the time is ripe for describing some of the recent development of superconducting devices, systems and applications. As such, the discussion of superconducting qubits and circuits is limited to devices that are proven useful for current or near future applications. Consequently, the centre of interest is the practical applications of QIP, such as computation and simulation in Physics and Chemistry.

809 citations

Journal ArticleDOI
TL;DR: The field of circuit quantum electrodynamics (QED) as discussed by the authors was initiated by Josephson-junction-based superconducting circuits and has become an independent and thriving field of research in its own right.
Abstract: Quantum-mechanical effects at the macroscopic level were first explored in Josephson-junction-based superconducting circuits in the 1980s. In recent decades, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors. The realization that superconducting qubits can be made to strongly and controllably interact with microwave photons, the quantized electromagnetic fields stored in superconducting circuits, led to the creation of the field of circuit quantum electrodynamics (QED), the topic of this review. While atomic cavity QED inspired many of the early developments of circuit QED, the latter has now become an independent and thriving field of research in its own right. Circuit QED allows the study and control of light-matter interaction at the quantum level in unprecedented detail. It also plays an essential role in all current approaches to gate-based digital quantum information processing with superconducting circuits. In addition, circuit QED provides a framework for the study of hybrid quantum systems, such as quantum dots, magnons, Rydberg atoms, surface acoustic waves, and mechanical systems interacting with microwave photons. Here the coherent coupling of superconducting qubits to microwave photons in high-quality oscillators focusing on the physics of the Jaynes-Cummings model, its dispersive limit, and the different regimes of light-matter interaction in this system are reviewed. Also discussed is coupling of superconducting circuits to their environment, which is necessary for coherent control and measurements in circuit QED, but which also invariably leads to decoherence. Dispersive qubit readout, a central ingredient in almost all circuit QED experiments, is also described. Following an introduction to these fundamental concepts that are at the heart of circuit QED, important use cases of these ideas in quantum information processing and in quantum optics are discussed. Circuit QED realizes a broad set of concepts that open up new possibilities for the study of quantum physics at the macro scale with superconducting circuits and applications to quantum information science in the widest sense.

773 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an introductory guide to the central concepts and challenges in the rapidly accelerating field of superconducting quantum circuits, including qubit design, noise properties, qubit control, and readout techniques.
Abstract: The aim of this review is to provide quantum engineers with an introductory guide to the central concepts and challenges in the rapidly accelerating field of superconducting quantum circuits. Over the past twenty years, the field has matured from a predominantly basic research endeavor to one that increasingly explores the engineering of larger-scale superconducting quantum systems. Here, we review several foundational elements -- qubit design, noise properties, qubit control, and readout techniques -- developed during this period, bridging fundamental concepts in circuit quantum electrodynamics (cQED) and contemporary, state-of-the-art applications in gate-model quantum computation.

595 citations

Journal ArticleDOI
01 Jan 2019
TL;DR: A review of ultrastrong coupling between light and matter can be found in this paper, where the authors discuss entangled ground states with virtual excitations, new avenues for nonlinear optics, and connections to several important physical models.
Abstract: Light–matter coupling with strength comparable to the bare transition frequencies of the system is called ultrastrong. This Review surveys how experiments have realized ultrastrong coupling in the past decade, the new phenomena predicted in this regime and the applications it enables. Ultrastrong coupling between light and matter has, in the past decade, transitioned from a theoretical idea to an experimental reality. It is a new regime of quantum light–matter interaction, which goes beyond weak and strong coupling to make the coupling strength comparable to the transition frequencies in the system. The achievement of weak and strong coupling has led to increased control of quantum systems and to applications such as lasers, quantum sensing, and quantum information processing. Here we review the theory of quantum systems with ultrastrong coupling, discussing entangled ground states with virtual excitations, new avenues for nonlinear optics, and connections to several important physical models. We also overview the multitude of experimental setups, including superconducting circuits, organic molecules, semiconductor polaritons, and optomechanical systems, that have now achieved ultrastrong coupling. We conclude by discussing the many potential applications that these achievements enable in physics and chemistry.

579 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the theoretical foundation for topological insulators and superconductors is reviewed and recent experiments are described in which the signatures of topologically insulators have been observed.
Abstract: Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. These states are possible due to the combination of spin-orbit interactions and time-reversal symmetry. The two-dimensional (2D) topological insulator is a quantum spin Hall insulator, which is a close cousin of the integer quantum Hall state. A three-dimensional (3D) topological insulator supports novel spin-polarized 2D Dirac fermions on its surface. In this Colloquium the theoretical foundation for topological insulators and superconductors is reviewed and recent experiments are described in which the signatures of topological insulators have been observed. Transport experiments on $\mathrm{Hg}\mathrm{Te}∕\mathrm{Cd}\mathrm{Te}$ quantum wells are described that demonstrate the existence of the edge states predicted for the quantum spin Hall insulator. Experiments on ${\mathrm{Bi}}_{1\ensuremath{-}x}{\mathrm{Sb}}_{x}$, ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$, ${\mathrm{Bi}}_{2}{\mathrm{Te}}_{3}$, and ${\mathrm{Sb}}_{2}{\mathrm{Te}}_{3}$ are then discussed that establish these materials as 3D topological insulators and directly probe the topology of their surface states. Exotic states are described that can occur at the surface of a 3D topological insulator due to an induced energy gap. A magnetic gap leads to a novel quantum Hall state that gives rise to a topological magnetoelectric effect. A superconducting energy gap leads to a state that supports Majorana fermions and may provide a new venue for realizing proposals for topological quantum computation. Prospects for observing these exotic states are also discussed, as well as other potential device applications of topological insulators.

15,562 citations

Journal ArticleDOI
TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Abstract: Topological insulators are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi2Te3 and Bi2Se3 crystals. Theoretical models, materials properties, and experimental results on two-dimensional and three-dimensional topological insulators are reviewed, and both the topological band theory and the topological field theory are discussed. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.

11,092 citations

Book
01 Jan 1951

10,667 citations

Journal ArticleDOI
TL;DR: In this paper, a theoretical analysis of the shape of the 2s2p^{1}P resonance of He observed in the inelastic scattering of electrons is presented. But the analysis is restricted to the case of one discrete level with two or more continua and of a set of discrete levels with one continuum.
Abstract: The interference of a discrete autoionized state with a continuum gives rise to characteristically asymmetric peaks in excitation spectra. The earlier qualitative interpretation of this phenomenon is extended and revised. A theoretical formula is fitted to the shape of the $2s2p^{1}P$ resonance of He observed in the inelastic scattering of electrons. The fitting determines the parameters of the $2s2p^{1}P$ resonance as follows: $E=60.1$ ev, $\ensuremath{\Gamma}\ensuremath{\sim}0.04$ ev, $f\ensuremath{\sim}2 \mathrm{to} 4\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3}$. The theory is extended to the interaction of one discrete level with two or more continua and of a set of discrete levels with one continuum. The theory can also give the position and intensity shifts produced in a Rydberg series of discrete levels by interaction with a level of another configuration. The connection with the nuclear theory of resonance scattering is indicated.

8,210 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the possibility of simulating physics in the classical approximation, a thing which is usually described by local differential equations, and the possibility that there is to be an exact simulation, that the computer will do exactly the same as nature.
Abstract: This chapter describes the possibility of simulating physics in the classical approximation, a thing which is usually described by local differential equations. But the physical world is quantum mechanical, and therefore the proper problem is the simulation of quantum physics. A computer which will give the same probabilities as the quantum system does. The present theory of physics allows space to go down into infinitesimal distances, wavelengths to get infinitely great, terms to be summed in infinite order, and so forth; and therefore, if this proposition is right, physical law is wrong. Quantum theory and quantizing is a very specific type of theory. The chapter talks about the possibility that there is to be an exact simulation, that the computer will do exactly the same as nature. There are interesting philosophical questions about reasoning, and relationship, observation, and measurement and so on, which computers have stimulated people to think about anew, with new types of thinking.

7,202 citations