scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial

16 Jan 2001-Applied Physics Letters (APPLIED PHYSICS LETTERS)-Vol. 78, Iss: 4, pp 489-489
TL;DR: In this paper, the authors present experimental data, numerical simulations, and analytical transfer-matrix calculations for a two-dimensional isotropic, left-handed metamaterial (LHM) at X-band microwave frequencies.
Abstract: We present experimental data, numerical simulations, and analytical transfer-matrix calculations for a two-dimensionally isotropic, left-handed metamaterial (LHM) at X-band microwave frequencies. A LHM is one that has a frequency band with simultaneously negative eeff(ω) and μeff(ω), thereby having real values of index of refraction and wave vectors, and exhibiting extended wave propagation over that band. Our physical demonstration of a two-dimensional isotropic LHM will now permit experiments to verify some of the explicit predictions of reversed electromagnetic-wave properties including negative index of refraction as analyzed by Veselago [Usp. Fiz. Nauk 92, 517 (1964), Sov. Phys. Usp. 10, 509 (1968)].

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
06 Apr 2001-Science
TL;DR: These experiments directly confirm the predictions of Maxwell's equations that n is given by the negative square root ofɛ·μ for the frequencies where both the permittivity and the permeability are negative.
Abstract: We present experimental scattering data at microwave frequencies on a structured metamaterial that exhibits a frequency band where the effective index of refraction (n) is negative. The material consists of a two-dimensional array of repeated unit cells of copper strips and split ring resonators on interlocking strips of standard circuit board material. By measuring the scattering angle of the transmitted beam through a prism fabricated from this material, we determine the effective n, appropriate to Snell's law. These experiments directly confirm the predictions of Maxwell's equations that n is given by the negative square root of epsilon.mu for the frequencies where both the permittivity (epsilon) and the permeability (mu) are negative. Configurations of geometrical optical designs are now possible that could not be realized by positive index materials.

8,477 citations

Journal ArticleDOI
TL;DR: In this paper, a new approach for the development of planar metamaterial structures is developed, and analytical equivalent circuit models are proposed for isolated and coupled split-ring resonators/CSRRs coupled to planar transmission lines.
Abstract: In this paper, a new approach for the development of planar metamaterial structures is developed. For this purpose, split-ring resonators (SRRs) and complementary split-ring resonators (CSRRs) coupled to planar transmission lines are investigated. The electromagnetic behavior of these elements, as well as their coupling to the host transmission line, are studied, and analytical equivalent-circuit models are proposed for the isolated and coupled SRRs/CSRRs. From these models, the stopband/passband characteristics of the analyzed SRR/CSRR loaded transmission lines are derived. It is shown that, in the long wavelength limit, these stopbands/passbands can be interpreted as due to the presence of negative/positive values for the effective /spl epsiv/ and /spl mu/ of the line. The proposed analysis is of interest in the design of compact microwave devices based on the metamaterial concept.

1,405 citations


Cites background from "Microwave transmission through a tw..."

  • ...Following this seminal paper, other artificially fabricated structures exhibiting a left-handed behavior were reported [8]–[11] including the experimental demonstration of negative refraction [12]–[14] and backward wave radiation [15]....

    [...]

Journal ArticleDOI
TL;DR: The existence of acoustic metamaterial, in which both the effective density and bulk modulus are simultaneously negative, in the true and strict sense of an effective medium, is shown.
Abstract: We show here the existence of acoustic metamaterial, in which both the effective density and bulk modulus are simultaneously negative, in the true and strict sense of an effective medium. Our double-negative acoustic system is an acoustic analogue of Veselago's medium in electromagnetism, and shares many unique consequences, such as negative refractive index. The double negativity in acoustics is derived from low-frequency resonances, as in the case of electromagnetism, but the negative density and modulus are derived from a single resonance structure as distinct from electromagnetism in which the negative permeability and negative permittivity originates from different resonance mechanisms.

933 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the fundamental concepts and ideas of negative refractive index materials and present the ideas of meta-materials that enable the design of new materials with a negative dielectric permittivity, negative magnetic permeability, and negative fringes.
Abstract: In the past few years, new developments in structured electromagnetic materials have given rise to negative refractive index materials which have both negative dielectric permittivity and negative magnetic permeability in some frequency ranges. The idea of a negative refractive index opens up new conceptual frontiers in photonics. One much-debated example is the concept of a perfect lens that enables imaging with sub-wavelength image resolution. Here we review the fundamental concepts and ideas of negative refractive index materials. First we present the ideas of structured materials or meta-materials that enable the design of new materials with a negative dielectric permittivity, negative magnetic permeability and negative refractive index. We discuss how a variety of resonance phenomena can be utilized to obtain these materials in various frequency ranges over the electromagnetic spectrum. The choice of the wave-vector in negative refractive index materials and the issues of dispersion, causality and energy transport are analysed. Various issues of wave propagation including nonlinear effects and surface modes in negative refractive materials (NRMs) are discussed. In the latter part of the review, we discuss the concept of a perfect lens consisting of a slab of a NRM. This perfect lens can image the far-field radiative components as well as the nearfield evanescent components, and is not subject to the traditional diffraction limit. Different aspects of this lens such as the surface modes acting as the mechanism for the imaging of the evanescent waves, the limitations imposed by dissipation and dispersion in the negative refractive media, the generalization of this lens to optically complementary media and the possibility of magnification of the near-field images are discussed. Recent experimental developments verifying these ideas are briefly covered. (Some figures in this article are in colour only in the electronic version)

867 citations

Journal ArticleDOI
TL;DR: In this paper, the design, fabrication, and testing of several metamaterials that exhibit double negative medium properties at X band frequencies are reported, and the extraction of the effective permittivity and permeability for these metammaterials from reflection and transmission data at normal incidence is treated.
Abstract: The design, fabrication, and testing of several metamaterials that exhibit double negative (DNG) medium properties at X band frequencies are reported. DNG media are materials in which the permittivity and permeability are both negative. Simulation and experimental results are given that demonstrate the realization of DNG metamaterials matched to free-space. The extraction of the effective permittivity and permeability for these metamaterials from reflection and transmission data at normal incidence is treated. It is shown that the metamaterials studied exhibit DNG properties in the frequency range of interest.

865 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, it was shown that microstructures built from nonmagnetic conducting sheets exhibit an effective magnetic permeability /spl mu/sub eff/, which can be tuned to values not accessible in naturally occurring materials.
Abstract: We show that microstructures built from nonmagnetic conducting sheets exhibit an effective magnetic permeability /spl mu//sub eff/, which can be tuned to values not accessible in naturally occurring materials, including large imaginary components of /spl mu//sub eff/. The microstructure is on a scale much less than the wavelength of radiation, is not resolved by incident microwaves, and uses a very low density of metal so that structures can be extremely lightweight. Most of the structures are resonant due to internal capacitance and inductance, and resonant enhancement combined with compression of electrical energy into a very small volume greatly enhances the energy density at critical locations in the structure, easily by factors of a million and possibly by much more. Weakly nonlinear materials placed at these critical locations will show greatly enhanced effects raising the possibility of manufacturing active structures whose properties can be switched at will between many states.

8,135 citations

Journal ArticleDOI
TL;DR: A composite medium, based on a periodic array of interspaced conducting nonmagnetic split ring resonators and continuous wires, that exhibits a frequency region in the microwave regime with simultaneously negative values of effective permeability and permittivity varepsilon(eff)(omega).
Abstract: We demonstrate a composite medium, based on a periodic array of interspaced conducting nonmagnetic split ring resonators and continuous wires, that exhibits a frequency region in the microwave regime with

8,057 citations

Journal ArticleDOI
TL;DR: A mechanism for depression of the plasma frequency into the far infrared or even GHz band is proposed: Periodic structures built of very thin wires dilute the average concentration of electrons and considerably enhance the effective electron mass through self-inductance.
Abstract: The plasmon is a well established collective excitation of metals in the visible and near UV, but at much lower frequencies dissipation destroys all trace of the plasmon and typical Drude behavior sets in. We propose a mechanism for depression of the plasma frequency into the far infrared or even GHz band: Periodic structures built of very thin wires dilute the average concentration of electrons and considerably enhance the effective electron mass through self-inductance. Computations replicate the key features and confirm our analytic theory. The new structure has novel properties not observed before in the GHz band, including some possible impact on superconducting properties.

3,954 citations

Journal ArticleDOI
TL;DR: The regime of negative index, made relevant by a recent demonstration of an effective LHM, leads to unusual electromagnetic wave propagation and merits further exploration.
Abstract: The real part of the refractive index $n(\ensuremath{\omega})$ of a nearly transparent and passive medium is usually taken to have only positive values. Through an analysis of a current source radiating into a 1D ``left-handed'' material (LHM)---where the permittivity and permeability are simultaneously less than zero---we determine the analytic structure of $n(\ensuremath{\omega})$, demonstrating frequency regions where the sign of $\mathrm{Re}[n(\ensuremath{\omega})]$ must, in fact, be negative. The regime of negative index, made relevant by a recent demonstration of an effective LHM, leads to unusual electromagnetic wave propagation and merits further exploration.

1,068 citations