scispace - formally typeset
Search or ask a question
Journal ArticleDOI

MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment

TL;DR: Targeting MIF in individuals with manifest atherosclerosis can potentially be used to treat this condition and displays chemokine-like functions and acts as a major regulator of inflammatory cell recruitment and atherogenesis.
Abstract: The cytokine macrophage migration inhibitory factor (MIF) plays a critical role in inflammatory diseases and atherogenesis. We identify the chemokine receptors CXCR2 and CXCR4 as functional receptors for MIF. MIF triggered G αi- and integrin-dependent arrest and chemotaxis of monocytes and T cells, rapid integrin activation and calcium influx through CXCR2 or CXCR4. MIF competed with cognate ligands for CXCR4 and CXCR2 binding, and directly bound to CXCR2. CXCR2 and CD74 formed a receptor complex, and monocyte arrest elicited by MIF in inflamed or atherosclerotic arteries involved both CXCR2 and CD74. In vivo, Mif deficiency impaired monocyte adhesion to the arterial wall in atherosclerosis-prone mice, and MIF-induced leukocyte recruitment required Il8rb (which encodes Cxcr2). Blockade of Mif but not of canonical ligands of Cxcr2 or Cxcr4 in mice with advanced atherosclerosis led to plaque regression and reduced monocyte and T-cell content in plaques. By activating both CXCR2 and CXCR4, MIF displays chemokine-like functions and acts as a major regulator of inflammatory cell recruitment and atherogenesis. Targeting MIF in individuals with manifest atherosclerosis can potentially be used to treat this condition. © 2007 Nature Publishing Group.
Citations
More filters
Journal ArticleDOI
TL;DR: The mechanisms that control monocyte trafficking under homeostatic, infectious and inflammatory conditions are being unravelled and are the focus of this Review.
Abstract: Monocytes originate from progenitors in the bone marrow and traffic via the bloodstream to peripheral tissues. During both homeostasis and inflammation, circulating monocytes leave the bloodstream and migrate into tissues where, following conditioning by local growth factors, pro-inflammatory cytokines and microbial products, they differentiate into macrophage or dendritic cell populations. Recruitment of monocytes is essential for effective control and clearance of viral, bacterial, fungal and protozoal infections, but recruited monocytes also contribute to the pathogenesis of inflammatory and degenerative diseases. The mechanisms that control monocyte trafficking under homeostatic, infectious and inflammatory conditions are being unravelled and are the focus of this Review.

2,309 citations

Journal ArticleDOI
TL;DR: This work aims to systematically survey recently identified molecular mechanisms, translational developments and clinical strategies for targeting lipid-related inflammation in atherosclerosis and CAD.
Abstract: Coronary artery disease (CAD) arising from atherosclerosis is a leading cause of death and morbidity worldwide. The underlying pathogenesis involves an imbalanced lipid metabolism and a maladaptive immune response entailing a chronic inflammation of the arterial wall. The disturbed equilibrium of lipid accumulation, immune responses and their clearance is shaped by leukocyte trafficking and homeostasis governed by chemokines and their receptors. New pro- and anti-inflammatory pathways linking lipid and inflammation biology have been discovered, and genetic profiling studies have unveiled variations involved in human CAD. The growing understanding of the inflammatory processes and mediators has uncovered an intriguing diversity of targetable mechanisms that can be exploited to complement lipid-lowering therapies. Here we aim to systematically survey recently identified molecular mechanisms, translational developments and clinical strategies for targeting lipid-related inflammation in atherosclerosis and CAD.

1,834 citations


Cites background from "MIF is a noncognate ligand of CXC c..."

  • ...Notably, neutralizing the noncanonical chemokine macrophage migration inhibitory factor (MIF) caused regression of established lesions, probably because of its CXCR2 and CXCR4 agonist effect, which promoted macrophage and T-cell infiltratio...

    [...]

Journal ArticleDOI
TL;DR: This review focuses on recent advances in understanding how the chemokine system orchestrates immune cell migration and positioning at the organismic level in homeostasis, in acute inflammation, and during the generation and regulation of adoptive primary and secondary immune responses in the lymphoid system and peripheral nonlymphoid tissue.
Abstract: Chemokines are chemotactic cytokines that control the migratory patterns and positioning of all immune cells. Although chemokines were initially appreciated as important mediators of acute inflammation, we now know that this complex system of approximately 50 endogenous chemokine ligands and 20 G protein–coupled seven-transmembrane signaling receptors is also critical for the generation of primary and secondary adaptive cellular and humoral immune responses. Recent studies demonstrate important roles for the chemokine system in the priming of naive T cells, in cell fate decisions such as effector and memory cell differentiation, and in regulatory T cell function. In this review, we focus on recent advances in understanding how the chemokine system orchestrates immune cell migration and positioning at the organismic level in homeostasis, in acute inflammation, and during the generation and regulation of adoptive primary and secondary immune responses in the lymphoid system and peripheral nonlymphoid tissue.

1,475 citations


Cites background from "MIF is a noncognate ligand of CXC c..."

  • ...and macrophages, leading to CXCR2 signaling and integrin-dependent chemotaxis of monocytes, which is necessary for the maintenance of atherosclerotic plaques (105)....

    [...]

Journal ArticleDOI
TL;DR: This review summarizes the current understanding of inflammatory and immune mechanisms in atherosclerosis and indicates that Regulatory T cells and B1 cells secreting natural antibodies are atheroprotective.
Abstract: Atherosclerosis is an inflammatory disease of the wall of large- and medium-sized arteries that is precipitated by elevated levels of low-density lipoprotein (LDL) cholesterol in the blood. Although dendritic cells (DCs) and lymphocytes are found in the adventitia of normal arteries, their number is greatly expanded and their distribution changed in human and mouse atherosclerotic arteries. Macrophages, DCs, foam cells, lymphocytes, and other inflammatory cells are found in the intimal atherosclerotic lesions. Beneath these lesions, adventitial leukocytes organize in clusters that resemble tertiary lymphoid tissues. Experimental interventions can reduce the number of available blood monocytes, from which macrophages and most DCs and foam cells are derived, and reduce atherosclerotic lesion burden without altering blood lipids. Under proatherogenic conditions, nitric oxide production from endothelial cells is reduced and the burden of reactive oxygen species (ROS) and advanced glycation end products (AGE) ...

1,344 citations


Cites background from "MIF is a noncognate ligand of CXC c..."

  • ...Binding of MIF to its newly discovered receptor complex of CXCR2 and CD74 resulted in elevated monocyte arrest on atherosclerotic endothelium (130)....

    [...]

Journal ArticleDOI
TL;DR: It is shown that endothelial cell–derived apoptotic bodies are generated during atherosclerosis and convey paracrine alarm signals to recipient vascular cells that trigger the production of CXCL12.
Abstract: Apoptosis is a pivotal process in embryogenesis and postnatal cell homeostasis and involves the shedding of membranous microvesicles termed apoptotic bodies. In response to tissue damage, the CXC chemokine CXCL12 and its receptor CXCR4 counteract apoptosis and recruit progenitor cells. Here, we show that endothelial cell-derived apoptotic bodies are generated during atherosclerosis and convey paracrine alarm signals to recipient vascular cells that trigger the production of CXCL12. CXCL12 production was mediated by microRNA-126 (miR-126), which was enriched in apoptotic bodies and repressed the function of regulator of G protein (heterotrimeric guanosine triphosphate-binding protein) signaling 16, an inhibitor of G protein-coupled receptor (GPCR) signaling. This enabled CXCR4, a GPCR, to trigger an autoregulatory feedback loop that increased the production of CXCL12. Administration of apoptotic bodies or miR-126 limited atherosclerosis, promoted the incorporation of Sca-1+ progenitor cells, and conferred features of plaque stability on different mouse models of atherosclerosis. This study highlights functions of microRNAs in health and disease that may extend to the recruitment of progenitor cells during other forms of tissue repair or homeostasis.

1,234 citations


Cites methods from "MIF is a noncognate ligand of CXC c..."

  • ...The extent of atherosclerosis was assessed in aortic roots by detecting lipid deposition with Oil Red O (29, 40, 41) in 5-mm transversal sections....

    [...]

References
More filters
Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: The new appreciation of the role of inflammation in atherosclerosis provides a mechanistic framework for understanding the clinical benefits of lipid-lowering therapies and unravelling the details of inflammatory pathways may eventually furnish new therapeutic targets.
Abstract: Abundant data link hypercholesterolaemia to atherogenesis. However, only recently have we appreciated that inflammatory mechanisms couple dyslipidaemia to atheroma formation. Leukocyte recruitment and expression of pro-inflammatory cytokines characterize early atherogenesis, and malfunction of inflammatory mediators mutes atheroma formation in mice. Moreover, inflammatory pathways promote thrombosis, a late and dreaded complication of atherosclerosis responsible for myocardial infarctions and most strokes. The new appreciation of the role of inflammation in atherosclerosis provides a mechanistic framework for understanding the clinical benefits of lipid-lowering therapies. Identifying the triggers for inflammation and unravelling the details of inflammatory pathways may eventually furnish new therapeutic targets.

7,858 citations


"MIF is a noncognate ligand of CXC c..." refers background in this paper

  • ...An impressive body of evidence supports the concept that atherosclerosis is a chronic inflammatory disease of the arterial wall, characterized by an influx of immunocompetent mononuclear cell...

    [...]

Journal ArticleDOI
TL;DR: The evidence is recounted that atherosclerosis, the main cause of CAD, is an inflammatory disease in which immune mechanisms interact with metabolic risk factors to initiate, propagate, and activate lesions in the arterial tree.
Abstract: ecent research has shown that inflammation plays a key role in coronary artery disease (CAD) and other manifestations of atherosclerosis. Immune cells dominate early atherosclerotic lesions, their effector molecules accelerate progression of the lesions, and activation of inflammation can elicit acute coronary syndromes. This review highlights the role of inflammation in the pathogenesis of atherosclerotic CAD. It will recount the evidence that atherosclerosis, the main cause of CAD, is an inflammatory disease in which immune mechanisms interact with metabolic risk factors to initiate, propagate, and activate lesions in the arterial tree. A decade ago, the treatment of hypercholesterolemia and hypertension was expected to eliminate CAD by the end of the 20th century. Lately, however, that optimistic prediction has needed revision. Cardiovascular diseases are expected to be the main cause of death globally within the next 15 years owing to a rapidly increasing prevalence in developing countries and eastern Europe and the rising incidence of obesity and diabetes in the Western world. 1 Cardiovascular diseases cause 38 percent of all deaths in North America and are the most common cause of death in European men under 65 years of age and the second most common cause in women. These facts force us to revisit cardiovascular disease and consider new strategies for prediction, prevention, and treatment.

7,551 citations

Journal ArticleDOI
TL;DR: This issue of Pharmacological Reviews includes a new venture in the collaboration between the International Union of Pharmacology (IUPHAR) and the American Society for Pharmacology and Experimental Therapeutics (ASPET), in that a new classification of voltage-gated ion channels is outlined.
Abstract: This issue of Pharmacological Reviews includes a new venture in the collaboration between the International Union of Pharmacology (IUPHAR) and the American Society for Pharmacology and Experimental Therapeutics (ASPET), in that a new classification of voltage-gated ion channels is outlined in this

7,389 citations

Journal ArticleDOI
TL;DR: The properties of chemokines and their receptors are discussed and the roles of these chemoattractants in selected clinical disorders are highlighted.
Abstract: In this review, the authors discuss the properties of chemokines and their receptors and highlight the roles of these chemoattractants in selected clinical disorders.

2,368 citations


"MIF is a noncognate ligand of CXC c..." refers background in this paper

  • ...JAM-1 is a ligand of the b(2) integrin LFA-1 involved in transendothelial migration of leukocytes....

    [...]

Book ChapterDOI
TL;DR: In this paper, the authors focused on interleukin-8 (IL-8) and related chemotactic cytokines, namely, CXC and CC chemokines.
Abstract: Publisher Summary This chapter focuses on interleukin-8 (IL-8) and related chemotactic cytokines—namely, CXC and CC chemokines. IL-8 is the best known member of a new class of cytokines that are widely studied because of their ability to attract and activate leukocytes, and their potential role as mediators of inflammation. IL-8 was originally isolated from the culture supernatants of stimulated human blood monocytes and was identified as a protein of 72 amino acids with a molecular weight of 8383. The three-dimensional structure of IL-8 has been studied by nuclear magnetic resonance spectroscopy and X-ray crystallography. In concentrated solution, and on crystallization, IL-8 is present as a dimer. The first CC chemokine was identified after cloning by differential hybridization from human tonsillar lymphocytes and was termed LD78. The CC and CXC chemokines are similar in size and have an overall structure that is characterized by the two intrachain disulfide bonds, short N-terminal and long C-terminal sequences. It discusses the role of chemokines in pathology with skin inflammation because psoriasis was the first disease to be linked to overproduction of IL-8. Several independent studies document the occurrence of high levels of IL-8 in the synovial fluid of inflamed joints of patients with different forms of rheumatic diseases, osteoarthritis, and gout.

2,281 citations