scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Proceedings ArticleDOI
01 Dec 2015
TL;DR: It is concluded that a new framework of adaptive hybrid resource allocation procedure, containing a proactive contention-based phase followed by a reactive contention-free one with dynamic phase duration is necessary to cope with such transitional behavior of mmWave networks.
Abstract: In millimeter wave (mmWave) communication systems, narrow beam operations overcome severe channel attenuations, reduce multiuser interference, and thus introduce the new concept of noise-limited mmWave wireless networks. The regime of the network, whether noise-limited or interference- limited, heavily reflects on the medium access control (MAC) layer throughput and on proper resource allocation and interference management strategies. Yet, alternating presence of these regimes and, more importantly, their dependence on the mmWave design parameters are ignored in the current approaches to mmWave MAC layer design, with the potential disastrous consequences on the throughput/delay performance. In this paper, tractable closed-form expressions for collision probability and MAC layer throughput of mmWave networks, operating under slotted ALOHA and TDMA, are derived. The new analysis reveals that mmWave networks may exhibit a non-negligible transitional behavior from a noise-limited regime to an interference-limited regime, depending on the density of the transmitters, density and size of obstacles, transmission probability, beamwidth, and transmit power. It is concluded that a new framework of adaptive hybrid resource allocation procedure, containing a proactive contention-based phase followed by a reactive contention-free one with dynamic phase duration, is necessary to cope with such transitional behavior.

29 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...A mmWave communication has short wavelength, large bandwidth, and high attenuation through most obstacles [3]– [5]....

    [...]

  • ..., 35 dB due to the human body [3]) that the typical receiver can receive interference only from transmitters with LoS condition, called LoS interferers....

    [...]

Proceedings ArticleDOI
01 Sep 2014
TL;DR: Using the latest path loss equations from measured data, a newly developed mmWave channel environment, and a model for distance-dependence LOS blocking probability, system-level capacity results are presented for a dense urban environment and show that with adequate access point density that low outage probability can be obtained.
Abstract: Millimeter wave (mmWave) frequencies offer the potential for very large capacity increases from traditional cellular frequencies because of the incredible amount of available spectrum (eg, 10 GHz in the E-band alone) Additionally the latest channel measurements and research have shown that mmWave frequencies are useable for a 5G-type local area access system However, employing mmWave frequencies for outdoor local area access presents a challenge particularly from blockage of the signal from the mobile to the access point Using the latest path loss equations from measured data, a newly developed mmWave channel environment, and a model for distance-dependence LOS blocking probability, system-level capacity results are presented for a dense urban environment The results show that with adequate access point density that low outage probability can be obtained with cell-edge rates well in excess of 100 Mbps and cell-average user throughputs of up to 512 Gbps

29 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...To this end, New York University (NYU) has recently taken outdoor measurements at 73 GHz in the dense urban environment of Manhattan [2][10]....

    [...]

Journal ArticleDOI
TL;DR: A stochastic geometry-based approach for the modeling and analysis of finite millimeter wave (mmWave) wireless networks where a random number of transmitters and receivers are randomly located inside a finite region is developed.
Abstract: This paper develops a stochastic geometry-based approach for the modeling and analysis of finite millimeter wave (mmWave) wireless networks where a random number of transmitters and receivers are randomly located inside a finite region. We consider a selection strategy to serve a reference receiver by the transmitter providing the maximum average received power among all transmitters. In our system model, we employ the unique features of mmWave communications such as directional transmit and receive beamforming and different channels for line-of-sight (LOS) and non-line-of-sight (NLOS) links. Accordingly, deploying a blockage process suitable for mmWave networks, we study the coverage probability and the ergodic rate for the reference receiver that can be located everywhere inside the network region. As key steps for the analyses, the distribution of the distance from the reference receiver to its serving LOS or NLOS transmitter and LOS and NLOS association probabilities are derived. We also derive the Laplace transform of the interferences from LOS and NLOS transmitters. Finally, we propose upper and lower bounds on the coverage probability that can be evaluated easier than the exact results, and investigate the impact of different parameters including the receiver location, the beamwidth, and the blockage process exponent on the system performance.

29 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...However, the signal propagation at mmWave frequencies suffers from poor penetration, diffraction and scattering through blockages [2], [3]....

    [...]

Proceedings ArticleDOI
01 Sep 2017
TL;DR: In this article, a real-time MIMO channel sounder for 28 GHz was proposed, which is capable of performing horizontal and vertical beam steering with the help of phased arrays.
Abstract: In this paper, we present a novel real-time MIMO channel sounder for 28 GHz. Until now, the common practice to investigate the directional characteristics of millimeter-wave channels has been using a rotating horn antenna. The sounder presented here is capable of performing horizontal and vertical beam steering with the help of phased arrays. Thanks to the fast beam-switching capability, the proposed sounder can perform measurements that are directionally resolved both at the transmitter (TX) and receiver (RX) as fast as 1.44 milliseconds compared to the minutes or even hours required for rotating horn antenna sounders. This does not only enable us to measure more points for better statistical inference but also allows us to perform directional analysis in dynamic environments. Equally important, the short measurement time combined with the high phase stability of our setup limits the phase drift between TX and RX, enabling phase-coherent sounding of all beam pairs even when TX and RX are physically separated and have no cabled connection for synchronization. This ensures that the measurement data is suitable for high-resolution parameter extraction algorithms. Along with the system design and specifications, this paper also discusses the measurements performed for verification of the sounder. Furthermore, we present sample measurements from a channel sounding campaign performed on a residential street.

29 citations

Journal ArticleDOI
TL;DR: An mmWave hierarchical small cell base station backhauling (mw-HierBack) system to organize densely deployed base stations (BSs) in HetNet and presents a path protection strategy to balance backhaul traffic among S-BSs and to minimize the fluctuations incurred by rerouting.
Abstract: Dense deployments of small cells in heterogeneous networks (HetNets) massively increase spectral efficiency and capacity. Since ubiquitous fiber availability is prohibitively expensive, wireless backhaul technique via millimeter wave (mmWave) is regarded as a practical solution. Additionally, mmWave with huge under-utilized bandwidth is able to provide multi-Gbps data rate comparable to fiber lines. In this paper, we propose an mmWave hierarchical small cell base station backhauling ( mw-HierBack ) system to organize densely deployed base stations (BSs) in HetNet. A group of Super-BSs (S-BSs) are selected to minimize the resource cost on the gateways and to robustly relay backhaul traffic of the remaining BSs to the core network against any blockage or link failure. Under this network structure, we present a path protection strategy to balance backhaul traffic among S-BSs and to minimize the fluctuations incurred by rerouting. The simulation results show our solution can efficiently scale with the growth of BSs and properly route the backhaul traffic without overloading any one of the S-BSs.

29 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...[26] consider the scenario where mmWave communication...

    [...]

  • ...On the other hand, mmWave transmitted by highly directional antenna is noise-limited [26], which means thermal noise dominates the interference....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]