scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Posted Content
TL;DR: The proposed framework enables the small base stations to jointly decide on forming the multi-hop, mmW links over backhaul infrastructure that belongs to multiple, independent MNOs, while properly allocating resources across those links.
Abstract: In this paper, a novel framework is proposed for optimizing the operation and performance of a large-scale, multi-hop millimeter wave (mmW) backhaul within a wireless small cell network (SCN) that encompasses multiple mobile network operators (MNOs). The proposed framework enables the small base stations (SBSs) to jointly decide on forming the multi-hop, mmW links over backhaul infrastructure that belongs to multiple, independent MNOs, while properly allocating resources across those links. In this regard, the problem is addressed using a novel framework based on matching theory that is composed to two, highly inter-related stages: a multi-hop network formation stage and a resource management stage. One unique feature of this framework is that it jointly accounts for both wireless channel characteristics and economic factors during both network formation and resource management. The multi-hop network formation stage is formulated as a one-to-many matching game which is solved using a novel algorithm, that builds on the so-called deferred acceptance algorithm and is shown to yield a stable and Pareto optimal multi-hop mmW backhaul network. Then, a one-to-many matching game is formulated to enable proper resource allocation across the formed multi-hop network. This game is then shown to exhibit peer effects and, as such, a novel algorithm is developed to find a stable and optimal resource management solution that can properly cope with these peer effects. Simulation results show that the proposed framework yields substantial gains, in terms of the average sum rate, reaching up to 27% and 54%, respectively, compared to a non-cooperative scheme in which inter-operator sharing is not allowed and a random allocation approach. The results also show that our framework provides insights on how to manage pricing and the cost of the cooperative mmW backhaul network for the MNOs.

9 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...Moreover, inter-operator mmW backhaul architectures are more robust against blockage and link quality degradation compared to schemes in which operators act independently and non-cooperatively [6]....

    [...]

Journal ArticleDOI
01 Feb 2020
TL;DR: This paper proposes a heuristic algorithm based on the use of LP relaxation and solving many-to-one assignment problem with generalized assignment problem heuristics that achieves significant improvements in minimizing total power consumption compared to coupled UE association algorithm and algorithms utilizing the power consumption models.
Abstract: Heterogeneous Cloud Radio Access Networks ( H − C R A N ) is a network architecture that combines Macro Base Stations (MBS)s and Small Base Stations (SBS)s with cloud infrastructures. The dense deployment of SBSs in H-CRAN is needed to provide high data rates to User Equipments (UEs) but causes high energy consumption. Unrealistic power models lead to inefficient UE association schemes in terms of energy. In this paper, we study the joint optimization of Uplink (UL) and Downlink (DL) decoupled UE association and switching on/off the SBSs in H-CRAN by incorporating a realistic power model with the objective of minimizing the power consumption in H-CRAN. The power model encompasses static and the dynamic power consumption of MBS, the static power consumption of SBS, the power consumption of transmission links to cloud infrastructure and the power consumption of UEs. The problem is transformed into Single Source Capacitated Facility Location Problem (SSCFLP) which is NP-Hard. We then propose a heuristic algorithm based on the use of LP relaxation and solving many-to-one assignment problem with generalized assignment problem heuristics. Extensive simulations demonstrate that the proposed heuristic algorithm performs very close to optimal and achieves significant improvements in minimizing total power consumption compared to coupled UE association algorithm and algorithms utilizing the power consumption models that do not encompass MBS dynamic power consumption and the power consumption of transmission links to cloud infrastructure for various scenarios.

9 citations


Additional excerpts

  • ...Introduction 5G wireless networks are expected to provide 1000-fold data rate improvement and save up to 90 percent of energy consumption compared to the present systems [1]-[3]....

    [...]

Proceedings ArticleDOI
01 May 2017
TL;DR: The proposed multi-beam algorithm and circuit structure is simulated within the frequency range 55–65 GHz to demonstrate squinting-free wide-band multi-beams at millimeter wave carrier frequencies for emerging 5G applications.
Abstract: An intermediate frequency (IF) squinting-free multi-beamforming method is proposed for multi-antenna systems. The proposed approach uses a low-complexity factorization of a true-time-delay (TTD) multi-beam matrix, which is proposed to be realized using an analog integrated circuits approach. A TTD realization of multi-beams at intermediate frequency is achieved following amplification and synchronous down-conversion via the proposed Delay Vandermonde Matrix (DVM) in which matrix elements correspond to the compound phase compensation required for squint-free steering of each radio-frequency beam. True-time-delays are proposed to be efficiently realized on-chip by applying a sparse factorization to the DVM, which leads to a low circuit complexity implementation requiring a significantly lower number of TTD blocks and phase compensations compared to an equivalent direct implementation for a given N number of beams. The proposed method, for 9-beams, leads to a 60% reduction of analog integrated circuit based TTD blocks and phase compensators. The TTD blocks can be realized on chip using active-RC based integrated analog all-pass filters. The proposed multi-beam algorithm and circuit structure is simulated within the frequency range 55–65 GHz to demonstrate squinting-free wide-band multi-beams at millimeter wave carrier frequencies for emerging 5G applications.

9 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...INTRODUCTION Multiple simultaneous radio frequency (RF) beams having high bandwidth (several GHz) are needed for applications, such as mm-wave (mmW) wireless systems, imaging, and radar [1], [2]....

    [...]

Posted Content
TL;DR: In this article, the authors propose an LTE-5G tight integration architecture based on mobile terminals' dual connectivity to LTE and 5G radio access networks, and evaluate which are the new network procedures that will be needed to support it.
Abstract: This Thesis will propose an LTE-5G tight integration architecture, based on mobile terminals' dual connectivity to LTE and 5G radio access networks, and will evaluate which are the new network procedures that will be needed to support it. Moreover, this new architecture will be implemented in the ns-3 simulator, and a thorough simulation campaign will be conducted in order to evaluate its performance, with respect to the baseline of handover between LTE and 5G

9 citations

Proceedings ArticleDOI
24 Jul 2016
TL;DR: Channel models for line-of-sight (LOS) and non-line-ofsight (NLOS) links for specific mmWave frequency bands are presented and used in the evaluation of green efficiency metrics, maximum achievable capacity, bits/s, and power efficiency, bit/s/Thermal Noise Energy Unit.
Abstract: Millimeter wave (mmWave) spectrum bands have been proposed for commercial wireless communications to relieve the spectrum crunch in the microwave band. The mmWave bands are being vigorously pursued for multiple gigabit data transmission. In this paper, channel models for line-of-sight (LOS) and non-line-ofsight (NLOS) links for specific mmWave frequency bands are presented and then used in the evaluation of green efficiency metrics, maximum achievable capacity, bits/s, and power efficiency, bits/s/Thermal Noise Energy Unit. These efficiency indexes are investigated and illustrated using Monte Carlo simulation as a function of signal to noise ratio, channel model parameters and transmitterreceiver separation distance. The results show that the mmWave bands provide better channel capacity; however, less energy efficiency is achieved.

9 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...These limitations are discussed in more details in [2], [3]....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]