scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Proceedings ArticleDOI
13 Sep 2021
TL;DR: In this article, the authors proposed a new mathematical formulation of the coverage planning problem that includes Reconfigurable Intelligent Surfaces (RISs) to enhance the coverage of mm-wave communications by improving the received signal power and offering an alternative radio path when the direct link is interrupted.
Abstract: With the capability to support gigabit data rates, millimetre-wave (mm-Wave) communication is unanimously considered a key technology of future cellular networks. However, the harsh propagation at such high frequencies makes these networks quite susceptible to failures due to obstacle blockages. Recently introduced Reconfigurable Intelligent Surfaces (RISs) can enhance the coverage of mm-Wave communications by improving the received signal power and offering an alternative radio path when the direct link is interrupted. While several works have addressed this possibility from a communication standpoint, none of these has yet investigated the impact of RISs on large-scale mm-Wave networks. Aiming to fill this literature gap, we propose a new mathematical formulation of the coverage planning problem that includes RISs. Using well-established planning methods, we have developed a new optimization model where RISs can be installed alongside base stations to assist the communications, creating what we have defined as Smart Radio Connections. Our simulation campaigns show that RISs effectively increase both throughput and coverage of access networks, while further numerical results highlight additional benefits that the simplified scenarios analyzed by previous works could not reveal.

9 citations

Journal ArticleDOI
TL;DR: In this paper , a semi-centralized resource allocation scheme for IAB networks is proposed, which is designed to be flexible, with low complexity, and compliant with the 3GPP IAB specifications.
Abstract: The next generations of mobile networks will be deployed as ultra-dense networks, to match the demand for increased capacity and the challenges that communications in the higher portion of the spectrum (i.e., the mmWave band) introduce. Ultra-dense networks, however, require pervasive, high-capacity backhaul solutions, and deploying fiber optic to all base stations is generally considered to be too expensive for network operators. The 3rd Generation Partnership Project (3GPP) has thus introduced Integrated Access and Backhaul (IAB), a wireless backhaul solution in which the access and backhaul links share the same hardware, protocol stack, and also spectrum. The multiplexing of different links in the same frequency bands, however, introduces interference and capacity sharing issues, thus calling for the introduction of advanced scheduling and coordination schemes. This paper proposes a semi-centralized resource allocation scheme for IAB networks, designed to be flexible, with low complexity, and compliant with the 3GPP IAB specifications. We develop a version of the Maximum Weighted Matching (MWM) problem that can be applied on a spanning tree that represents the IAB network and whose complexity is linear in the number of IAB-nodes. The proposed solution is compared with state-of-the-art distributed approaches through end-to-end, full-stack system-level simulations with a 3GPP-compliant channel model, protocol stack, and a diverse set of user applications. The results show that our scheme can increase the throughput of cell-edge users up to 3 times, while decreasing the overall network congestion with an end-to-end delay reduction of up to 25 times.

9 citations

Proceedings ArticleDOI
02 May 2018
TL;DR: In this paper, a combination of Space-Time Block Coded Spatial Modulation with Hybrid Analog-Digital Beamforming (STBC-SM-HBF) for 60 GHz millimeter-wave (mmWave) communications is proposed in order to take advantage of the merits of spatial modulation (SM), STBC, analog beamforming (ABF), and digital precoding techniques while avoiding their drawbacks.
Abstract: In this paper, a combination of Space-Time Block Coded Spatial Modulation with Hybrid Analog-Digital Beamforming (STBC-SM-HBF) for 60 GHz Millimeter-wave (mmWave) communications is proposed in order to take advantage of the merits of Spatial Modulation (SM), Space-Time Block Codes (STBC), Analog Beamforming (ABF), and digital precoding techniques while avoiding their drawbacks. This proposed system benefits from the multiplexing gain of SM, from the transmit diversity gain of STBC and from the Signal-to-Noise Ratio (SNR) gain of the beamformer. The simulation results demonstrate that the Zero Forcing (ZF) and the Minimum Mean Square Error (MMSE) precoded STBC-SM systems have better Bit Error Rate (BER) performance than the precoded SM system, and the former showed a performance degradation compared to STBC-SM system tough. Furthermore, the error performance is significantly improved by employing an array of ABF which improves the system performance as the number of antenna array elements increases due to providing a beamforming gain, which is hence of great significance to the Fifth Generation (5G) mmWave communications. In addition, it is demonstrated that a minimum of 2 antenna elements in the proposed scheme of STBC-SM-HBF are required to obtain better error performance than that of the conventional SM and STBC-SM systems under the same spectral efficiency of 2 bits/s/Hz.

9 citations

Proceedings ArticleDOI
01 Oct 2018
TL;DR: It is proved that a fixed-length fractional search method that decouples the beam-alignment of base-station and user-end is optimal, and the superior performance of the conventional and interactive exhaustive search methods is demonstrated.
Abstract: Millimeter-wave communications rely on narrow-beam transmissions to cope with the strong signal attenuation at these frequencies, thus demanding precise alignment between transmitter and receiver. The beam-alignment procedure may create a significant overhead, thus potentially offsetting the benefits of using narrow communication beams. In this paper, an optimal interactive energy-efficient beam-alignment protocol is designed, that optimizes over the sequence of beams and the duration of beam-alignment, based on feedback received from the user-end (thus, interactive), so as to support a minimum communication rate. It is proved that a fixed-length fractional search method that decouples the beam-alignment of base-station and user-end is optimal. Numerical results using analog beams demonstrate the superior performance of our proposed fractional search: the conventional and interactive exhaustive search methods, and the bisection search method incur, respectively, 7. 5dB, 14dB and 4dB of additional power consumption compared to the proposed fractional search.

9 citations


Cites methods from "Millimeter-Wave Cellular Wireless N..."

  • ...We assume that the ACK/NACK signal from the UE is received perfectly and within the end of the slot by the BS (for instance, by using a conventional microwave control channel [18])....

    [...]

Posted Content
TL;DR: The proposed algorithm is based on an alternating optimization approach, which yields close-to-optimum results with significantly reduced complexity and the latency gain of three-layer distributed IoT-fog-cloud computing is quantified with respect to fog-only and cloud-only computing systems.
Abstract: This paper investigates a three-layer IoT-fog-cloud computing system to determine the optimum workload and power allocation at each layer. The objective is to minimize maximum per-layer latency (including both data processing and transmission delays) with individual power constraints. The resulting optimum resource allocation problem is a mixed-integer optimization problem with exponential complexity. Hence, the problem is first relaxed under appropriate modeling assumptions, and then an efficient iterative method is proposed to solve the relaxed but still non-convex problem. The proposed algorithm is based on an alternating optimization approach, which yields close-to-optimum results with significantly reduced complexity. Numerical results are provided to illustrate the performance of the proposed algorithm compared to the exhaustive search method. The latency gain of three-layer distributed IoT-fog-cloud computing is quantified with respect to fog-only and cloud-only computing systems.

9 citations

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]