scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Posted Content
TL;DR: The Fog-RAN resource allocation problem is formulated in the form of a Markov decision process (MDP), and several reinforcement learning (RL) methods are employed for solving the MDP problem by learning the optimum decision-making policies to achieve the best possible performance regardless of the IoT environment.
Abstract: In light of the quick proliferation of Internet of things (IoT) devices and applications, fog radio access network (Fog-RAN) has been recently proposed for fifth generation (5G) wireless communications to assure the requirements of ultra-reliable low-latency communication (URLLC) for the IoT applications which cannot accommodate large delays. Hence, fog nodes (FNs) are equipped with computing, signal processing and storage capabilities to extend the inherent operations and services of the cloud to the edge. We consider the problem of sequentially allocating the FN's limited resources to the IoT applications of heterogeneous latency requirements. For each access request from an IoT user, the FN needs to decide whether to serve it locally utilizing its own resources or to refer it to the cloud to conserve its valuable resources for future users of potentially higher utility to the system (i.e., lower latency requirement). We formulate the Fog-RAN resource allocation problem in the form of a Markov decision process (MDP), and employ several reinforcement learning (RL) methods, namely Q-learning, SARSA, Expected SARSA, and Monte Carlo, for solving the MDP problem by learning the optimum decision-making policies. We verify the performance and adaptivity of the RL methods and compare it with the performance of a fixed-threshold-based algorithm. Extensive simulation results considering 19 IoT environments of heterogeneous latency requirements corroborate that RL methods always achieve the best possible performance regardless of the IoT environment.

9 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...Millimeter-wave (mm-wave) frequency range is likely to be utilized in 5G because of the spacious bandwidths available in these frequencies for cellular services [5]....

    [...]

Journal ArticleDOI
TL;DR: The effectiveness of the proposed estimation technique is shown by evaluating the normalized root mean square errors as well as mean errors and standard deviations in several operating conditions of practical interest and the robustness of the new estimator even under a multipath model mismatch.
Abstract: This paper focuses on the problem of parameter estimation for a Fluctuating Two-Ray (FTR) model in the context of wireless mobile communications. Precisely, the received signal is assumed to be the superposition of two dominant components (typically a direct plus a reflected path signal) in addition to diffusive secondary contributions. The signal components may be affected by random amplitude shadowing, statistically modeled by Nakagami- $m$ distribution, multiplied by unknown scaling factors with random uniform independent phases, whereas the diffusive component is assumed to follow the complex Gaussian distribution. Exploiting the method of moments, a $4\times 4$ nonlinear system is herein mathematically derived, which is very hard to be solved due to the strong nonlinearity. Therefore, a sequential procedure based on some prior information about the diffusive component power level is devised to solve it. The effectiveness of the proposed estimation technique is shown by evaluating the normalized root mean square errors as well as mean errors and standard deviations in several operating conditions of practical interest also considering the limit case of only one-ray in order to compare the proposed approach to simpler estimators, already presented in the literature. The results show the robustness of the new estimator even under a multipath model mismatch. Finally, the effectiveness of the proposed estimation procedure is confirmed through measured mmWave data.

9 citations

Journal ArticleDOI
TL;DR: In this article , the use of the Terahertz (THz) band for in-body and on-body communications has been gaining attention recently, by exploiting the accurate THz sensing and imaging capabilities, body-centric biomedical applications can transcend the limitations of molecular, acoustic and radio-frequency solutions.
Abstract: Following recent advancements in Terahertz (THz) technology, THz communications are currently being celebrated as key enablers for various applications in future generations of communication networks. While typical communication use cases are over medium-range air interfaces, the inherently small beamwidths and transceiver footprints at THz frequencies support nano-communication paradigms. In particular, the use of the THz band for in-body and on-body communications has been gaining attention recently. By exploiting the accurate THz sensing and imaging capabilities, body-centric THz biomedical applications can transcend the limitations of molecular, acoustic, and radio-frequency solutions. In this paper, we study the use of the THz band for body-centric networks, by surveying works on THz device technologies, channel and noise modeling, modulation schemes, and networking topologies. We also promote THz sensing and imaging applications in the healthcare sector, especially for detecting zootonic viruses such as Coronavirus. We present several open research problems for body-centric THz networks.

9 citations

Journal ArticleDOI
TL;DR: The downlink communication of a single-cell millimetre wave (mmWave) massive multi-user multiple- input multiple-input multiple-output (MU-MIMO) system with hybrid beamforming (HBF) with in-phase and quadrature-phase imbalance is studied.
Abstract: The downlink communication of a single-cell millimetre wave (mmWave) massive multi-user multiple-input multiple-output (MU-MIMO) system with hybrid beamforming (HBF) is studied. The authors consider the system with in-phase and quadrature-phase imbalance (IQI) at the radio-frequency (RF) chains. Firstly, they provide the HBF designs based on the complex-valued effective channel and augmented real-valued equivalent channel, respectively. Then, they study the impact of IQI on the achievable downlink sum rate and derive the approximation of the achievable sum rate on various HBF schemes. Results show that the sum rate of the receiver designed based on real-valued equivalent channel increases without bound, but the performance of the receiver designed based on complex-valued presentation exhibits a finite ceiling, as the number of BS antennas increases. Furthermore, both receivers limit to finite ceiling rates due to IQI as the transmit power goes to infinity. Moreover, the HBF system reaches a peak sum rate at a certain value of the number of users, and IQI has an ignorable impact on the value. Meanwhile, the impact of the amplitude imbalance is more significant on the performance degradation of the HBF system than that of the phase imbalance.

9 citations

Book ChapterDOI
30 Sep 2016
TL;DR: In this paper, a performance analysis model for wireless backhauling of small cells with massive MIMO and mm-wave communication is presented, based on this model, some numerical results on the performance of massive-MIMO-and/or mm-Wave-based wireless back-haul networks are presented.
Abstract: An introduction to 5G small cells will be given and their backhauling requirements will be discussed. Then, the basics of massive MIMO and mm‐wave communication and their suitability for small‐cell backhauling and fronthauling will be discussed. Also, challenges related to using massive MIMO and mm‐wave communication for small‐cell backhauling and fronthauling will be outlined. In this context, the current state of the art will be reviewed. To this end, a performance analysis model for wireless back hauling of small cells with massive MIMO and mm‐wave communication will be outlined. Based on this model, some numerical results on the performance of massive‐MIMO‐ and/or mm‐wave‐based wireless backhaul networks will be presented.

9 citations

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]