scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , a joint optimization approach between real-time optimization and game theory (ROG) is proposed to solve the optimization problems of large-scale UDNs with low complexity.
Abstract: Ultra-dense networks (UDNs) have been employed to solve the pressing problems in relation to the increasing demand for higher coverage and capacity of the fifth generation (5G) wireless networks. The deployment of UDNs in a very large scale has been envisioned to break the fundamental deadlocks of beyond 5G or the sixth generation (6G) networks and deliver many more orders of magnitude gains that today’s technologies achieve. However, the mathematical tool to optimize the system performance under the stringent radio resource constraints is widely recognized to be a formidable challenge. System-level performance optimization of current UDNs are usually conducted by relying on numerical simulations, which are often time-consuming and have become extremely difficult in the context of 6G with extremely high density. As such, there is an urgent need for developing a realistic mathematical model for optimizing the 6G UDNs. In this paper, we introduce challenges as well as issues that have to be thoroughly considered while deploying UDNs in realistic environment. We revisit efficient mathematical techniques including game theory and real-time optimization in the context of optimizing UDNs performance. In addition, emerging technologies which are suitable to apply in UDNs are also discussed. Some of them have already been used in UDNs with high efficiency while the others which are still under investigation are expected to boost the performance of UDNs to achieve the requirements of 6G. Importantly, for the first time, we introduce the joint optimal approach between realtime optimization and game theory (ROG) which is an effective tool to solve the optimization problems of large-scale UDNs with low complexity. Then, we describe two approaches for using ROG in UDNs. Finally, some case study of ROG are given to illustrate how to apply ROG for solving the problems of different applications in UDNs.

9 citations

Proceedings ArticleDOI
25 Jun 2018
TL;DR: This paper investigates the joint optimal placement of virtual service chains consisting of virtual application functions (components) and the steering of traffic through them, over a 5G multi-technology edge network model consisting of both Ethernet and mmWave links.
Abstract: Next-generation mobile networks (5G and beyond) are expected to provide higher data rates and ultra-low latency in support of demanding applications, such as virtual and augmented reality, robots and drones, etc. To meet these stringent requirements, edge computing constitutes a central piece of the solution architecture wherein functional components of an application can be deployed over the edge network so as to reduce bandwidth demand over the core network while providing ultra-low latency communication to users. In this paper, we investigate the joint optimal placement of virtual service chains consisting of virtual application functions (components) and the steering of traffic through them, over a 5G multi-technology edge network model consisting of both Ethernet and mmWave links. This problem is NP-hard. We provide a comprehensive “microscopic” binary integer program to model the system, along with a heuristic that is one order of magnitude faster than solving the corresponding binary integer program. Extensive evaluations demonstrate the benefits of managing virtual service chains (by distributing them over the edge network) compared to a baseline “middlebox” approach in terms of overall admissible virtual capacity. We observe significant gains when deploying mmWave links that complement the Ethernet physical infrastructure. Moreover, most of the gains are attributed to only 30% of these mmWave links.

9 citations


Cites methods from "Millimeter-Wave Cellular Wireless N..."

  • ...PS is obtained using the empirical studies on mmWave technology described in [23], [24]....

    [...]

Journal ArticleDOI
TL;DR: For the first time, the joint optimal approach between realtime optimization and game theory (ROG) is introduced which is an effective tool to solve the optimization problems of large-scale UDNs with low complexity.
Abstract: Ultra-dense networks (UDNs) have been employed to solve the pressing problems in relation to the increasing demand for higher coverage and capacity of the fifth generation (5G) wireless networks. The deployment of UDNs in a very large scale has been envisioned to break the fundamental deadlocks of beyond 5G or the sixth generation (6G) networks and deliver many more orders of magnitude gains that today’s technologies achieve. However, the mathematical tool to optimize the system performance under the stringent radio resource constraints is widely recognized to be a formidable challenge. System-level performance optimization of current UDNs are usually conducted by relying on numerical simulations, which are often time-consuming and have become extremely difficult in the context of 6G with extremely high density. As such, there is an urgent need for developing a realistic mathematical model for optimizing the 6G UDNs. In this paper, we introduce challenges as well as issues that have to be thoroughly considered while deploying UDNs in realistic environment. We revisit efficient mathematical techniques including game theory and real-time optimization in the context of optimizing UDNs performance. In addition, emerging technologies which are suitable to apply in UDNs are also discussed. Some of them have already been used in UDNs with high efficiency while the others which are still under investigation are expected to boost the performance of UDNs to achieve the requirements of 6G. Importantly, for the first time, we introduce the joint optimal approach between realtime optimization and game theory (ROG) which is an effective tool to solve the optimization problems of large-scale UDNs with low complexity. Then, we describe two approaches for using ROG in UDNs. Finally, some case study of ROG are given to illustrate how to apply ROG for solving the problems of different applications in UDNs.

9 citations

Journal ArticleDOI
TL;DR: A subarray-cooperation-based multi-resolution codebook design and the corresponding beam alignment scheme, which enables the mmWave backhaul links to quickly align the desired beam pairs under single-dominant-path channels, is proposed.
Abstract: The conflict between heavy training overhead and large beamforming gain is a bottleneck to deploy millimeter-wave (mmWave) communications for the next-generation wireless networks. In response, this paper proposes a subarray-cooperation-based multi-resolution codebook design and the corresponding beam alignment scheme, which enables the mmWave backhaul links to quickly align the desired beam pairs under single-dominant-path channels. The proposed codebook is of a hybrid digital/analog structure, in which the digital component selects subarrays and handles the coupling impacts among the selected subarrays, and the analog component shapes essential sub-beams using phase-shifter groups. In particular, the analog beamformers are configured as equal-size discrete Fourier transform vectors, which are easy to implement. The resulting beam alignment method adaptively selects initial layers according to different transmission signal-to-noise ratios, guaranteeing sufficient success ratios on angle detection. The numerical results evaluate the effectiveness of the proposed scheme.

9 citations

Posted Content
23 Jan 2017
TL;DR: It is demonstrated that an integrated RF/mmWave signaling and channel estimation scheme can remedy the problem of high training overhead associated with mmWave beamforming, and it is proved using subadditivity analysis that the optimal scheduling policy is based on a single threshold that can be easily adopted despite high link variations.
Abstract: We propose a hybrid architecture that integrates RF (i.e., sub-6 GHz) and millimeter wave (mmWave) technologies for 5G cellular systems. In particular, communications in the mmWave band faces significant challenges due to variable channels, intermittent connectivity, and high energy usage. On the other hand, speeds for electronic processing of data is of the same order as typical rates for mmWave interfaces which makes the use of complex algorithms for tracking channel variations and adjusting resources accordingly impractical. Our proposed architecture integrates the RF and mmWave interfaces for beamforming and data transfer, and exploits the spatio-temporal correlations between the interfaces. Based on extensive experimentation in indoor and outdoor settings, we demonstrate that an integrated RF/mmWave signaling and channel estimation scheme can remedy the problem of high energy usage and delay associated with mmWave beamforming. In addition, cooperation between two interfaces at the higher layers effectively addresses the high delays caused by highly intermittent mmWave connectivity. We design a scheduler that fully exploits the mmWave bandwidth, while the RF link acts as a fallback mechanism to prevent high delay. To this end, we formulate an optimal scheduling problem over the RF and mmWave interfaces where the goal is to maximize the delay-constrained throughput of the mmWave interface. We prove using subadditivity analysis that the optimal scheduling policy is based on a single threshold that can be easily adopted despite high link variations.

9 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...Based on a large set of measurements, we conclude that the propagation situations can be classified into three types as it pertains to summarizing the connection between the large-scale effects in RF and mmWave: line-of-sight (LOS), blocker, and non line-of-sight (NLOS)....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]