scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Proceedings ArticleDOI
09 May 2016
TL;DR: This work forms the optimal topology design problem, with the objective of maximizing the scaling of traffic demand, and proposes a distributed method, where each node rapidly builds a segment of the topology around itself by forming connections with its nearest neighbors in discretized angular regions.
Abstract: In order to steer antenna beams towards one another for communication, wireless nodes with highly-directional antennas must track the channel state of their neighbors. To keep this overhead manageable, each node must limit the number of neighbors that it tracks. The subset of neighbors that each node chooses to track constitutes a network topology over which traffic can be routed. We consider this topology design problem, taking into account channel modeling, transmission scheduling, and traffic demand. We formulate the optimal topology design problem, with the objective of maximizing the scaling of traffic demand, and propose a distributed method, where each node rapidly builds a segment of the topology around itself by forming connections with its nearest neighbors in discretized angular regions. The method has low complexity and message passing overhead. The resulting topologies are shown to have desirable structural properties and approach the optimal solution in high path loss environments.

8 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...However, access to this wide bandwidth comes at the expense of the high path loss found at millimeter wave frequencies [5]....

    [...]

Proceedings ArticleDOI
01 Dec 2019
TL;DR: In this paper, the authors present millimeter-wave (mmWave) penetration loss measurements and analysis at E-bands-73 GHz and 81 GHz at the campus of Boise State University in the city of Boise.
Abstract: In this paper, we present millimeter-wave (mmWave) penetration loss measurements and analysis at E- bands-73 GHz and 81 GHz. Penetration loss was measured for common building materials such as clear glass, metal, tinted glass, wood, and drywall on the campus of Boise State University in the city of Boise. A horn antenna with a gain of 24 dBi was used at the transmitter and receiver at both bands, and both antennas were boresight- aligned with respect to the test material. A total of twelve locations were selected to test five materials. We tested two indoor materials (clear glass and wood) in at least two locations to determine the effect of penetration loss of materials in similar compositions. The average penetration loss and standard deviation were estimated for these indoor materials. We measured an average penetration loss of 2 to 9 dB for wood and glass, respectively. Furthermore, we measured the penetration loss of common indoor and outdoor building materials. We studied that outdoor materials had larger penetration losses, e.g., we obtained a penetration loss of 22.69 dB for outdoor metal, where this value dropped to 16.04 dB for indoor metal at 73 GHz. Similar results were also obtained for the 81 GHz channel, where the largest penetration loss was measured to be 26.5 dB through a tinted glass door in an outdoor setting.

8 citations

Journal ArticleDOI
TL;DR: A dynamic beam-aware DRX mechanism is proposed, which could be applied along with dynamic mmWave beam configuration for better energy efficiency and achieves 41.6% improvement in the sleep ratio without sacrificing the packet delivery latency performance.
Abstract: In the fifth-generation (5G) wireless communication system, the Discontinuous Reception (DRX) is indispensable to user equipment (UE) to support evolved technologies. However, the directionality of wireless links, especially in millimeter wave bands, leads the existing DRX mechanism to unnecessary power consumption. In this paper, we first identify the problems of beam pattern mismatching. Then, we proposed a dynamic beam-aware DRX mechanism, which could be applied along with dynamic mmWave beam configuration. The proposed framework jointly optimizes beam-aware DRX operation and dynamic mmWave beam configuration for better energy efficiency. A semi-Markov model is proposed to evaluate a UE sleeping ratio and packet delay. The simulation validates the proposed model. Compared to the baseline 5G NR DRX operation, the proposed scheme achieves 41.6% improvement in the sleep ratio without sacrificing the packet delivery latency performance.

8 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...Therefore, the development in the mmWave technology is essential for the evolution of communication [3], [4]....

    [...]

Journal ArticleDOI
TL;DR: By remotely heterodyning two independent laser carriers, the long-reach 60-GHz millimeter-wave-over-fiber (MMWoF) link is demonstrated for the Volterra series filtered quadrature amplitude modulation orthogonal frequency division multiplexing (QAM-OFDM) transmission with nonlinear noise suppression, which enables 13-Gbps data delivery through 50-km single-mode fiber (SMF) and 3-m free-space links.
Abstract: By remotely heterodyning two independent laser carriers, the long-reach 60-GHz millimeter-wave-over-fiber (MMWoF) link is demonstrated for the Volterra series filtered quadrature amplitude modulation orthogonal frequency division multiplexing (QAM-OFDM) transmission with nonlinear noise suppression, which enables 13-Gbps data delivery through 50-km single-mode fiber (SMF) and 3-m free-space links A wavelength tunable colorless laser diode transmits the Volterra filter equalized QAM-OFDM data to remotely couple with a localized single-mode laser carrier at the optical receiving end of the MMWoF system Such an incoherently coupled dual-mode carrier facilitates the optical single-carrier modulation to suppress chromatic dispersion induced power fading effect of the SMF transmitted QAM-OFDM data The 2nd+3rd-order nonlinear noise induced by direct modulation, heterodyne conversion, and phase fluctuation of the incoherently coupled dual-mode carrier is corrected with the Volterra filter equalization to upgrade the decoded signal-to-noise ratio (SNR) by >2 dB After remotely heterodyning the downstream and the localized carriers with mutual incoherence in between, the 16-QAM OFDM transmission at a data rate up to 132 Gbps is successfully delivered over 3-m wireless link, which reveals the FEC certificated error vector magnitude of 141%, SNR of 17 dB, and bit error rate of 17 × 10−3

8 citations

Journal ArticleDOI
29 Jul 2021
TL;DR: In this article, the authors present an analytical framework to evaluate the performance of vehicular relaying, where vehicles on a highway exchange data with the network, either over direct vehicle-to-infrastructure (V2I) links with roadside units or a combination of a vehicleto-vehicle sidelink and a V2I link.
Abstract: With the high data rates and ultra-low latency it provides, millimeter-wave (mmWave) communications will be a key enabler for future vehicular networks. However, due to high penetration losses and high mobility, mmWave links experience frequent blockages. We present an analytical framework to evaluate the performance of vehicular relaying, where vehicles on a highway exchange data with the network, either over direct vehicle-to-infrastructure (V2I) links with roadside units or a combination of a vehicle-to-vehicle (V2V) sidelink and a V2I link. Both V2V and V2I line-of-sight links can be blocked by other vehicles. We establish continuous-time Markov chain models of the blockage events that V2I links and vehicular relays experience, and use their steady-state solution to obtain analytical expressions for the blockage probability, average blockage duration and the SINR distribution. We demonstrate through numerical examples that relays are helpful, especially when the traffic density is high, since they can provide intermittent but more frequent connection opportunities and reduce the blockage duration. We show that relays that are far from a vehicle only have a marginal benefit since they are blocked with higher probability, compared to the closer relays. The proposed analytical framework enables fast and accurate assessment of a given deployment scenario, which will benefit researchers exploring mmWave-enabled vehicular networks.

8 citations

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]