scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Proceedings ArticleDOI
08 Jun 2015
TL;DR: This paper focuses on the problem of estimating the massive MIMO channel in a code modulated path sharing multi-antenna (CPMA) architecture, when a limited number of radio frequency (RF) chains is available, and beamforming is performed through a combination of analog and digital signal processing.
Abstract: Massive multiple input multiple output (MIMO) millimeter wave (MMW) communications allow for a compact implementation and efficient beamforming. In this paper we focus on the problem of estimating the massive MIMO channel in a code modulated path sharing multi-antenna (CPMA) architecture, when a limited number of radio frequency (RF) chains is available, and beamforming is performed through a combination of analog and digital signal processing. Antennas are organized in uniform planar arrays (UPAs). The proposed solution is based on estimation of a channel sub-matrix and exploits properties of the UPA model. In particular, we first organize UPA indices in a way that simplifies further processing, then we propose a training sequence that minimizes the number of RF chains. Lastly, rather than estimating the subchannel matrix itself we estimate parameters of its entries by an efficient post-processing technique based on a four dimensional Fourier transform that exploits properties of the UPA model.

7 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...A second issue is related to the channel estimation when a huge number of antennas is deployed at the transmitter and at the receiver [6]....

    [...]

Proceedings ArticleDOI
01 Aug 2016
TL;DR: The overall fade margin required to deploy outdoor 60 GHz Line-of-Sight (LoS) radio systems in South Africa is investigated and it is found that the role played by system antennas, alongside the peripheral receiving amplifier circuits, may hold the key to improving achievable signal levels, especially during intense events of precipitation.
Abstract: The need to deliver efficient wireless services has spurred many network providers to access higher frequency bands on the millimetre-wave (mm-wave) platform which caters for larger system bandwidth and throughputs. This option offers networks the benefits of increased carrier flexibility and robust channel capacity, for many user applications, which are currently in high demand. The 60 GHz band is currently among the millimeter radio bands with high global appeal because of its capacity to provide multigigabit wireless solutions, for both outdoor and indoor applications. However, in many African countries, technological specifications required to initiate widespread deployment of this wireless technology is almost non-existent. Therefore, this paper will foray into some technical aspects concerning the future deployment of the 60 GHz wireless radio technology in South Africa. The major attenuation sources militating against the application of this frequency for seamless outdoor signal communication are mainly of two kinds: atmospheric and inclement weather conditions due to precipitation. With the deployment of this technology almost in the offing at urban areas, there is need to ascertain key infrastructural components required for link design of base stations at selected areas of South Africa. This will address fundamental radio resource issues pertaining to power levels, minimum link distances, network adaptability and transmission issues. In this paper, the overall fade margin required to deploy outdoor 60 GHz Line-of-Sight (LoS) radio systems in South Africa is investigated at ten urban sites under clear air and precipitation conditions. It is found that the role played by system antennas, alongside the peripheral receiving amplifier circuits, may hold the key to improving achievable signal levels, especially during intense events of precipitation.

7 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...However, this band is also capable of being widely deployed as cheaper wireless backhaul platforms for outdoor picocells and/or femtocells, in 4G and future 5G mobile networks [5]....

    [...]

Patent
11 May 2017
TL;DR: In this article, a wireless device with a plurality of transmitter chains that can be selectively used to transmit a beamformed signal determines a targeted receive power for the beam-formed signal, with respect to a target receiving device.
Abstract: In an aspect, a wireless device with a plurality of transmitter chains that can be selectively used to transmit a beam-formed signal determines a targeted receive power for the beam-formed signal, with respect to a target receiving device. The wireless device selects a number of the plurality of transmitter chains for forming the beam- formed signal, based on the targeted receive power and based on an estimated power consumption for each of the plurality of transmitter chains. The selection is performed so as to minimize a total power consumption, given the estimated power consumptions. The wireless device transmits a beam-formed signal, using the selected number of the plurality of transmitter chains.

7 citations

Journal ArticleDOI
TL;DR: Analysis of the hybrid deployment of sub-6 GHz and MMW networks, where the user equipment can simultaneously receive information and harvest energy from either sub- 6 GHz or MMW BSs, demonstrates that the ECP depends on the considered UE models and shows that the energy coverage probabilities for both PPP and PCP users converge to the PPP model as the cluster size tends to infinity.
Abstract: Dense deployment of sub-6 GHz BSs not only enhance the network capacity but also improve the energy efficiency of wireless power transfer (WPT). Millimeter wave (MMW) technology features large antenna arrays with high directional beamforming gain and dense base station (BS) deployment that is also beneficial for WPT. This paper focuses on the hybrid deployment of sub-6 GHz and MMW networks, where the user equipment (UE) can simultaneously receive information and harvest energy from either sub-6 GHz or MMW BSs. By using a stochastic geometry framework, we develop analytical expressions for the energy coverage probability (ECP) and signal-to-interference-plus-noise coverage probability (SCP) of a typical user, where the BS and UE locations are modeled by either a Poisson point process (PPP) or a Poisson cluster process (PCP). We further incorporate the unique characteristics of MMW communications in the analysis and study the impact of the practical energy harvesting model on the system performance. Numerical results are provided to validate the accuracy of the analytical models. The results demonstrate that the ECP depends on the considered UE models, where for the PPP model, as the cluster size of BS increases, the ECP increases. In contrast, for the PCP model, the ECP decreases with the increasing of BS cluster size. The results also show that the energy coverage probabilities for both PPP and PCP users converge to the PPP model as the cluster size tends to infinity.

7 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...However, the transmission signals in sub-6 GHz tier are not affected by blockages due to their high penetration capability and diffraction characteristics [8]....

    [...]

  • ...field measurements [8], [9] or stochastic geometry model [10]– [13]....

    [...]

Journal ArticleDOI
TL;DR: The approximation algorithm parallel data stream scheduling is proposed for the case of half-duplex network under the no interference model, which has better approximation ratio than the fractional weighted coloring based algorithms and even attains the optimal solution for the special case of uniform orthogonal backhaul networks.
Abstract: Millimeter-wave (mmWave) communication is a promising technology to cope with the exponential increase in 5G data traffic. Such networks typically require a very dense deployment of base stations. A subset of those, so-called macro base stations, feature high-bandwidth connection to the core network, while relay base stations are connected wirelessly. To reduce cost and increase flexibility, wireless backhauling is needed to connect both macro to relay as well as relay to relay base stations. The characteristics of mmWave communication mandates new paradigms for routing and scheduling. The paper investigates scheduling algorithms under different interference models. To showcase the scheduling methods, we study the maximum throughput fair scheduling problem. Yet the proposed algorithms can be easily extended to other problems. For a full-duplex network under the no interference model, we propose an efficient polynomial-time scheduling method, the {\em schedule-oriented optimization}. Further, we prove that the problem is NP-hard if we assume pairwise link interference model or half-duplex radios. Fractional weighted coloring based approximation algorithms are proposed for these NP-hard cases. Moreover, the approximation algorithm parallel data stream scheduling is proposed for the case of half-duplex network under the no interference model. It has better approximation ratio than the fractional weighted coloring based algorithms and even attains the optimal solution for the special case of uniform orthogonal backhaul networks.

7 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...Although it can be partially compensated by directional antennas [1], [2], the effective...

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]