scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Journal ArticleDOI
TL;DR: The results show that assuming impenetrable obstacle comes at almost no accuracy penalty, and the accuracy of neglecting antenna sidelobes can be guaranteed with sufficiently large number of antenna elements.
Abstract: Industry 4.0 is the emerging trend of the industrial automation. Millimeter-wave (mmWave) communication is a prominent technology for wireless networks to support the Industry 4.0 requirements. The availability of tractable accurate interference models would greatly facilitate performance analysis and protocol development for these networks. In this paper, we investigate the accuracy of an interference model that assumes impenetrable obstacles and neglects the sidelobes. We quantify the error of such a model in terms of statistical distribution of the signal to noise plus interference ratio and of the user rate for outdoor mmWave networks under different carrier frequencies and antenna array settings. The results show that assuming impenetrable obstacle comes at almost no accuracy penalty, and the accuracy of neglecting antenna sidelobes can be guaranteed with sufficiently large number of antenna elements. The comprehensive discussions of this paper provide useful insights for the performance analysis and protocol design of outdoor mmWave networks.

4 citations

Journal ArticleDOI
TL;DR: This work uses a novel modified bivariate Nakagami- $m$ (MBN) model to tractably and accurately characterize the joint, non-stationary statistics of the channel gains seen at the times of measurement and data transmission and proposes a near-optimal, practically amenable bound-based selection (PABS) rule.
Abstract: The use of many narrow beams to overcome the adverse propagation conditions in millimeter-wave channels leads to large training durations and overheads in 5G systems. This causes the beam measurements to become outdated by different extents at the time the transmit and receive beams are selected. The rapid changes in user device orientation exacerbate this problem. We first present a novel modified bivariate Nakagami- $m$ (MBN) model to tractably and accurately characterize the joint, non-stationary statistics of the channel gains seen at the times of measurement and data transmission. We then derive a novel and optimal beam selection rule that maximizes the average rate of the system. We use the MBN model to propose a near-optimal, practically amenable bound-based selection (PABS) rule. Our approach captures several pertinent aspects about the spatial channel model and 5G, such as transmission of periodic bursts of reference signals, feedback from the user to enable the base station to select its transmit beam, and the faster pace of updating the data rate compared to the transmit-receive beam pair. The PABS rule markedly outperforms the widely used conventional power-based selection rule and is less sensitive to user orientation changes.

4 citations

Proceedings ArticleDOI
08 Jun 2018
TL;DR: This paper designs a non-slotted association beamforming training (A-BFT) frame structure for multi-users without separating A-B FT slots in order to alleviate packet collisions due to the shortage of contention and training frames and proposes two multiuserbeamforming training mechanisms.
Abstract: MmWave in the unlicensed 60GHz band is highly discussed due to the rapid growth of wireless communication services. The utilization of microwave spectrum below 10 GHz is almost reaching its limit. Beamforming (BF) has become an essential technique to compensate the high path loss phenomenon of mmWave. IEEE 802.11ad and 802.11ay standardization task group institute directional multi-gigabit (DMG) wireless local area networks (WLANs) supporting mmWave techniques. With wireless devices explosively increasing, the limited number of BF slots in conventional DMG protocols leads to high packet collision probability, which potentially degrades the system performance. Most of the existing research does not take the multi-user BF contention problem into consideration. In this paper, we design a non-slotted association beamforming training (A-BFT) frame structure for multi-users without separating A-BFT slots in order to alleviate packet collisions due to the shortage of contention and training frames. This new proposed structure allows collisions with useful information left in remaining non-collided slots or frames in order to leverage the insufficiency of BF training for multiple devices. Furthermore, in order to further reduce BF collision probability, we propose two multiuser beamforming training mechanisms, including the time-based distributed coordination function (TDCF) and time-based beam-collision avoidance (TBCA) schemes. Simulation results demonstrate that our new proposed frame structure along with proposed TDCF and TBCA mechanisms outperforms 802.11ad protocol.

4 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...The main characteristic of unlicensed mmWave in high frequency is large bandwidth but with high attenuation [5], [6]....

    [...]

Proceedings ArticleDOI
17 Dec 2015
TL;DR: A new analysis, which is much more detailed than any other in the existing literature and accommodates actual base-station topologies, captures the primary features of uplink communications.
Abstract: Fifth-generation cellular networks are expected to exhibit at least three primary physical-layer differences relative to fourth-generation ones: millimeter-wave propagation, antenna-array directionality, and densification of base stations. In this paper, the effects of these differences on the performance of single-carrier frequency-domain multiple-access uplink systems with frequency hopping are assessed. A new analysis, which is much more detailed than any other in the existing literature and accommodates actual base-station topologies, captures the primary features of uplink communications. Distance-dependent power-law, shadowing, and fading models based on millimeter-wave measurements are introduced. The beneficial effects of base-station densification, highly directional sectorization, and frequency hopping are illustrated.

4 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...max for the usually longer NLOS links [8], [9], [10]....

    [...]

  • ...For millimeter-wave frequencies, empirical data [8], [9], [10] indicates that the effect of the shadowing increases for the usually longer NLOS links....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]