scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Journal ArticleDOI
TL;DR: New mmWave-based cellular system is presented, its basic operation is designed, its capacity is evaluated and its effect is to imitate pseudo-small cells and pseudo-macro cell like 3GPP small cell enhancement architecture.
Abstract: This paper presents new mmWave-based cellular system as one of means to achieve the capacity requirement of 5G mobile communications. The base station of new system covers its service area with spot beams formed by many beamforming antennas, and one beam can be composed of multiple frequency allocation beam component carriers in which one broadband bandwidth is divided into multiple sub-bands at the millimeter frequency. The best feature of new cellular architecture is the multi-layered FA dynamic cell configuration and it means that one or more beam component carrier(s) can be grouped and then operated as one cell. The effect of this dynamic cell configuration is to avoid interference among cells via the association among multi-layered FAs and to imitate pseudo-small cells and pseudo-macro cell like 3GPP small cell enhancement architecture (user equipment in small cell enhancement architecture can use coverage layer (macro cell(s)) for mobility robustness and capacity layer (small cells) for capacity offering). In this paper, we design new system, its basic operation and evaluate its capacity to confirm the possibility as an alternative of 5G mobile communications.

4 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...(6) BPH baseline beam width Refer to Table 1 (7) Base station Tx power 30 dBm/Beam, 1tx/Beam (8) Center frequency 27 GHz (9) Bandwidth 1GHz (125MHz x 8FA) (9) Free space Loss (L) 92....

    [...]

Journal ArticleDOI
TL;DR: In this paper , the authors derived the beamforming gain expression achieved by a frequency-flat phased array designed for plane-wave propagation and derived an upper bound on the product of the array aperture and the system bandwidth.
Abstract: The narrowband and far-field assumption in conventional wireless system design leads to a mismatch with the optimal beamforming required for wideband and near-field systems. This discrepancy is exacerbated for larger apertures and bandwidths. To characterize the behavior of near-field and wideband systems, we derive the beamforming gain expression achieved by a frequency-flat phased array designed for plane-wave propagation. To determine the far-field to near-field boundary for a wideband system, we propose a frequency-selective distance metric. The proposed far-field threshold increases for frequencies away from the center frequency. The analysis results in a fundamental upper bound on the product of the array aperture and the system bandwidth. We present numerical results to illustrate how the gain threshold affects the maximum usable bandwidth for the n260 and n261 5G NR bands.

4 citations

Proceedings ArticleDOI
07 Jun 2020
TL;DR: Numerical results show that the proposed methods closely approach the asymptotic bound with a number of slots that is two order of magnitudes lower than the optimal method, providing significant performance gains in realistic mmWave propagation scenarios.
Abstract: Millimeter wave (mmWave) wideband channels in a multiple-input multiple-output (MIMO) transmission are described by a sparse set of impulse responses in the angle-delay, or space-time (ST), domain. In this paper we consider the problem of channel estimation and we discuss subspace methods which exploit the low-rank (LR) algebraic structure of the MIMO channel matrix and the related slowly- and fast-varying features (angles/delays of arrival and fading amplitudes, respectively). The main drawback of the optimal LR method is the excessively slow convergence to the mean square error lower bound for invariant angles/delay and time-varying fading. In this paper, new suboptimal LR techniques are proposed to reduce the complexity and accelerate the convergence. Numerical results show that the proposed methods closely approach the asymptotic bound with a number of slots that is two order of magnitudes lower than the optimal method, providing significant performance gains in realistic mmWave propagation scenarios.

4 citations

Proceedings ArticleDOI
20 Jul 2017
TL;DR: In this paper, the effect of downlink-uplink decoupling in a three-tier HetNet deployed in two different real-world environments is explored. And the simulation results show that DUDe can provide improvements with regard to increasing system coverage and data rates while the extent of improvement depends on the different environments that the system is deployed in.
Abstract: Millimeter wave (mmWave) links have the potential to offer high data rates and capacity needed in fifth generation (5G) networks, however they have very high penetration and path loss. A solution to this problem is to bring the base station closer to the end-user through heterogeneous networks (HetNets). HetNets could be designed to allow users to connect to different base stations (BSs) in the uplink and downlink. This phenomenon is known as downlink-uplink decoupling (DUDe). This paper explores the effect of DUDe in a three tier HetNet deployed in two different real-world environments. Our simulation results show that DUDe can provide improvements with regard to increasing the system coverage and data rates while the extent of improvement depends on the different environments that the system is deployed in.

4 citations

Posted Content
22 Feb 2016
TL;DR: This work presents the first-of-its-kind, opensource framework for modeling mmWave cellular networks in the ns-3 simulator, provided along with a configurable physical and MAC-layer implementation, which can be interfaced with the higher-layer protocols and core network model from the ns -3 LTE module for simulating end-to-end connectivity.
Abstract: The growing demand for ubiquitous mobile data services along with the scarcity of spectrum in the sub-6 GHz bands has given rise to the recent interest in developing wireless systems that can exploit the large amount of spectrum available in the millimeter wave (mmWave) frequency range. Due to its potential for multi-gigabit and ultra-low latency links, mmWave technology is expected to play a central role in 5th Generation (5G) cellular networks. Overcoming the poor radio propagation and sensitivity to blockages at higher frequencies presents major challenges, which is why much of the current research is focused at the physical layer. However, innovations will be required at all layers of the protocol stack to effectively utilize the large air link capacity and provide the end-to-end performance required by future networks. Discrete-event network simulation will be an invaluable tool for researchers to evaluate novel 5G protocols and systems from an end-to-end perspective. In this work, we present the first-of-its-kind, open-source framework for modeling mmWave cellular networks in the ns-3 simulator. Channel models are provided along with a configurable physical and MAC-layer implementation, which can be interfaced with the higher-layer protocols and core network model from the ns-3 LTE module to simulate end-to-end connectivity. The framework is demonstrated through several example simulations showing the performance of our custom mmWave stack.

4 citations


Cites methods from "Millimeter-Wave Cellular Wireless N..."

  • ...The framework is demonstrated through several example simulations showing the performance of our custom mmWave stack....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]