scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Proceedings ArticleDOI
01 Oct 2016
TL;DR: The performance results have shown that the performance of the hybrid iterative space equalizer is close to the fully digital counterpart after only a few iterations, and clearly outperforms the linear receivers recently proposed for hybrid mmW massive MIMO architectures.
Abstract: The aim of this manuscript is to propose a new hybrid iterative block space-time receiver structure for millimeter wave (mmW) systems, to efficiently separate the spatial streams. We consider that both the transmitter and the received are equipped with a large antenna array and the number of radio frequency (RF) chains is lower that the number of antennas. The analog and digital parts of the equalizer are jointly optimized using as a metric the mean square error (MSE) between the transmitted data vector and its estimate after the digital equalizer. The specificities of the analog domain impose several constraints in the joint optimization. To efficiently deal with the constraints the analog part is selected from a dictionary based on the array response vectors. Our performance results have shown that the performance of the hybrid iterative space equalizer is close to the fully digital counterpart after only a few iterations. Moreover, it clearly outperforms the linear receivers recently proposed for hybrid mmW massive MIMO architectures.

4 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...INTRODUCTION The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mmW) frequency spectrum for future broadband cellular communication networks [1]....

    [...]

01 Jan 2016
TL;DR: In this article, the performance of a millimeter wave (mmWave) cloud radio access network (CRAN) where remote radio heads (RRHs) are modelled as a homogeneous Poisson point process (PPP) and blockages are randomly distributed is analyzed.
Abstract: In this paper, we analyse the performance of a millimeter wave (mmWave) cloud radio access network (CRAN), where remote radio heads (RRHs) are modelled as a homogeneous Poisson point process (PPP) and blockages are randomly distributed. In contrast to the previous works on CRAN that operate below 6GHz, we consider CRAN operating in mmWave range (30-300 GHz). Since blockages have a significant impact on mmWave communications, we adopt a distance-dependent line-of-sight (LOS) probability function and model the locations of the LOS and non-line-of-sight (NLOS) RRHs as two independent non-homogeneous PPP. The outage performance and ergodic capacity of the LOS and NLOS RRHs are analysed and compared. When the RRH with the best channel is selected for transmission, the expressions of outage probability and throughput are provided. The presented results show that due to the severe path loss in NLOS links, in low transmitted power regime, the best RRH (BR) is always LOS. However, in high transmitted power regime, NLOS RRHs can be BR.

4 citations

Proceedings ArticleDOI
29 Jan 2019
TL;DR: This paper analytically characterize the Spectral Efficiency (SE) of MU-Massive-MIMO systems relying on ABS and theoretically define the asymptotic saturation level of the SE at high SNR.
Abstract: Analog Beamsteering (ABS) has emerged as a low complexity and power efficient solution for Wave (mmWave) massive Multiple Input Multiple Output (Massive-MIMO) systems. Driven by the ability to exploit the low spatial correlation between the User Terminals (UTs) when a high number of transmit antennas is available at the Base Station (BS), ABS can be used to support Multi User (MU) MIMO scenarios instead of digital or Hybrid Beamforming (HBF) approaches. In this paper, we analytically characterize the Spectral Efficiency (SE) of MU-Massive-MIMO systems relying on ABS and theoretically define the asymptotic saturation level of the SE at high SNR. On the other hand, we provide a tight theoretical approximation for the SE of the system when implementing HBF with ABS at the analog stage and Zero Forcing precoding at the digital layer.

4 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...Moreover, since mmWave channel is sparse and highly Line of Sight (LoS) dominated [6], Analog Beamsteering (ABS) [7] has recently emerged as one of the most attractive analog beamforming techniques....

    [...]

Proceedings Article
01 Jan 2019
TL;DR: In this paper, a 60 GHz swept-tone channel sounder with 1 GHz measurement bandwidth has been developed, which is used to analyse millimetre-wave propagation in a compact indoor office environment, and profiles of the power angle-of-arrival have been measured for a number of different transmitter and receiver configurations to identify the dominant propagation paths.
Abstract: A 60 GHz swept-tone channel sounder with 1 GHz measurement bandwidth has been developed. The sounder has been used to analyse millimetre-wave propagation in a compact indoor office environment. Profiles of the power angle-of-arrival have been measured for a number of different transmitter and receiver configurations to identify the dominant propagation paths. It was found that the power carried on specular single-and double-bounce reflections from objects in the office (e.g., door frames and whiteboards) are typically 15–20 dB below that carried on the line-of-sight (LOS) path. A further experiment with an absorber phantom (representing the human body) showed the LOS path can be readily shadowed at 60 GHz. However, the attenuation introduced by an internal wall consisting of drywall mounted on timber frames was measured to be between 11– 22 dB, leading to the conclusion that internal walls may be insufficient to isolate co-channel systems if the LOS path is otherwise occluded.

4 citations

Journal ArticleDOI
TL;DR: The proposed optimal, sub-optimal, and modified CFAR detection rules and receiver structures can be incorporated into existing systems with substantial savings and demonstrated that improper equalization of the interfering signal significantly affects the performance of the optimum detector.
Abstract: Spectral congestion necessitates the in-band operation or the spectrum-sharing of legacy radar and communication systems. Since these systems operate in the same band in spectrum-sharing mode, they interfere with one another. To address this problem from the radar’s perspective, this paper considers the coherent detection of target-reflected radar signals in the presence of interference from an in-band cyclostationary digital modulated wireless communication signal. Three different cases of target-reflected radar signals, namely, deterministic signals, signals with random phase, and completely random signals, are considered in this paper. The optimum detection rules are derived for these three cases and the corresponding receiver structures for the equalization of the interfering signal are presented. Sub-optimum detection structures are also derived with the assumption that the in-band interference is a white stationary time-invariant Gaussian process. Further, considering the equalization, modified CFAR receiver structures are also presented. By considering the mathematical models for cyclostationary or periodic in-band interference, the performances of the optimum, sub-optimum detectors, and modified CFAR detectors are quantified analytically in terms of detection probability and false alarm probability, and the resulting receiver operating characteristic (ROC) curves are analyzed as a function of the signal-to-interference ratio. It is demonstrated that improper equalization of the interfering signal significantly affects the performance of the optimum detector and this impact is analyzed in detail. As spectrum-sharing becomes more prevalent due to spectrum congestion, the proposed optimal, sub-optimal, and modified CFAR detection rules and receiver structures can be incorporated into existing systems with substantial savings.

4 citations

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]