scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the Sagnac loop was used as a comb-like wavelength filter, while a 10-km long dispersion compensating fiber was utilized to induce the four-wave mixing (FWM) effect in the cavity.

3 citations

Proceedings ArticleDOI
01 Sep 2020
TL;DR: A novel Generalized QSM (GQSM) aided mm-wave MIMO structure is proposed in this paper and the average BER performance of the proposed system outperforms the GSM aided mm -wave M IMO and QSM aidedmm-waveMIMO systems.
Abstract: Millimetre wave (mm-wave) communication and Multiple Input Multiple Output (MIMO) systems are promising solutions to overcome the challenge possessed by the future wireless systems. Spatial Modulation (SM) techniques has the inherent potential to overcome the drawbacks of MIMO systems such as increased energy consumption, complexity and cost. Quadrature Spatial Modulation (QSM) is another type of spatial modulation technique and it helps in enhancing the spectral efficiency achieved by Spatial Modulation (SM) by transmitting additional base 2 logarithm of N t bits and it retains all other advantages of SM. A novel Generalized QSM (GQSM) aided mm-wave MIMO structure is proposed in this paper. In order to select the antenna combinations in GQSM a virtual antenna grouping is performed. The analytical and simulated average BER of the proposed system are compared to analyse its performance. Also, the average BER performance of the proposed system outperforms the GSM aided mm-wave MIMO and QSM aided mm-wave MIMO systems.

3 citations


Cites methods from "Millimeter-Wave Cellular Wireless N..."

  • ...Millimetre Wave (mm-wave) communication is strongly recognized as the key technique to increase Spectral Efficiency (SE) to support 5G communication networks [1]....

    [...]

Journal ArticleDOI
TL;DR: In this paper , the authors developed an analytical framework to analyze various performance metrics in the downlink hybrid Heterogeneous Cellular Network (HCNet) under biased received power association, and derived expressions for the association probability, coverage probability, area spectral efficiency, and energy efficiency.

3 citations

Posted Content
TL;DR: Under symmetric channel conditions, it is proved that the UCB-deadline policy can achieve bounded regret in the likely case where the cost of using a channel is not too high to prevent all transmissions, and logarithmic regret otherwise.
Abstract: We study the problem of serving randomly arriving and delay-sensitive traffic over a multi-channel communication system with time-varying channel states and unknown statistics. This problem deviates from the classical exploration-exploitation setting in that the design and analysis must accommodate the dynamics of packet availability and urgency as well as the cost of each channel use at the time of decision. To that end, we have developed and investigated an index-based policy UCB-Deadline, which performs dynamic channel allocation decisions that incorporate these traffic requirements and costs. Under symmetric channel conditions, we have proved that the UCB-Deadline policy can achieve bounded regret in the likely case where the cost of using a channel is not too high to prevent all transmissions, and logarithmic regret otherwise. In this case, we show that UCB-Deadline is order-optimal. We also perform numerical investigations to validate the theoretical findings, and also compare the performance of the UCB-Deadline to another learning algorithm that we propose based on Thompson Sampling.

3 citations


Cites background or methods from "Millimeter-Wave Cellular Wireless N..."

  • ...This Bernoulli channel model reflects the sharp difference between line-of-sight (LOS) and non-line-ofsight channel (NLOS) states in millimeter-wave communications [2], [6]....

    [...]

  • ...However, these methods are inapplicable in millimeter-wave communication systems as the channels are highly intermittent and fast-varying [2], [6]....

    [...]

Journal ArticleDOI
19 Jul 2019-Sensors
TL;DR: Numerical results demonstrate that the interference temperature constraint of the primary sensor node enables us to balance secrecy performance of the secondary network, and provides interesting insights into how the system performance ofthe secondary network that is influenced by various system parameters: eavesdropper density, antenna gain and sector guard zone radius.
Abstract: This paper investigates the secrecy performance of a cognitive millimeter wave (mmWave) wiretap sensor network, where the secondary transmitter (SU-Tx) intends to communicate with a secondary sensor node under the interference temperature constraint of the primary sensor node. We consider that the random-location eavesdroppers may reside in the signal beam of the secondary network, so that confidential information can still be intercepted. Also, the interference to the primary network is one of the critical issues when the signal beam of the secondary network is aligned with the primary sensor node. Key features of mmWave networks, such as large number of antennas, variable propagation law and sensitivity to blockages, are taken into consideration. Moreover, an eavesdropper-exclusion sector guard zone around SU-Tx is introduced to improve the secrecy performance of the secondary network. By using stochastic geometry, closed-form expression for secrecy throughput (ST) achieved by the secondary sensor node is obtained to investigate secrecy performance. We also carry out the asymptotic analysis to facilitate the performance evaluation in the high transmit power region. Numerical results demonstrate that the interference temperature constraint of the primary sensor node enables us to balance secrecy performance of the secondary network, and provides interesting insights into how the system performance of the secondary network that is influenced by various system parameters: eavesdropper density, antenna gain and sector guard zone radius. Furthermore, blockages are beneficial to improve ST of the secondary sensor node under certain conditions.

3 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...Furthermore, because of the remarkable characteristics of the mmWave channel, for instance, the mmWave signals are more sensitive to blocking effects, and the fading statistics of the line-of-sight (LOS) link and the non-line-of-sight (NLOS) link are completely different [29], the secrecy performance of cognitive mmWave sensor networks will be very different from that of traditional cognitive microwave networks, which needs to be re-evaluated....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]