scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , an intelligent reflecting surface (IRS) aided millimeter wave (mmWave) massive MIMO system using hybrid beamforming/combining was considered, and two algorithms for IRS design exploiting alternating optimization and gradient ascent optimization methods were proposed.
Abstract: In this paper, we consider an intelligent reflecting surface (IRS) aided millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) system using hybrid beamforming/combining. To enhance error performance, we adopt X-code (or X-precoder), a low-complexity precoding technique for traditional MIMO channels, to encode information symbols. We first derive an upper bound on word error rate (WER), based on which we design jointly IRS phase shifts and X-code (or X-precoder) to minimize WER. Specifically, we propose two algorithms for IRS design exploiting alternating optimization and gradient ascent optimization methods. Then we devise X-code and X-precoder, respectively, by minimizing average WER over all channel realizations and WER for each channel realization. We also provide their diversity analysis. Further, we present the procedure of decoupling fully digital beamformer/combiner at transceiver into the optimal hybrid one. Finally, simulation results show that both IRS optimization algorithms have similar WERs whereas gradient ascent approach has a lower computational complexity. Simulations demonstrate that the designed X-code (or X-precoder) provides a significant performance gain.

3 citations

Journal ArticleDOI
TL;DR: In this article , the authors proposed an effective beamforming scheme based on deep reinforcement learning (DRL) and developed a deep Q-network (DQN) algorithm to train and determine the optimal RX beam direction with the purpose of maximizing average RSP.
Abstract: As more and more people choose high-speed rail (HSR) as a means of transportation for short trips, there is ever growing demand of high quality of multimedia services. With its rich spectrum resources, millimeter wave (mm-wave) communications can satisfy the high network capacity requirements for HSR. Also, it is possible for receivers (RXs) to be equipped with antenna arrays in mm-wave communication systems due to its short wavelength. However, as HSRs run with high speed, the received signal power (RSP) varies rapidly over a cell and it is the lowest at the edge of the cell compared to other locations. Consequently, it is necessary to conduct research on RX beamforming for HSR in mm-wave band to improve the quality of the received signal. In this paper, we focus on RX beamforming for a mm-wave train-ground communication system. To improve the RSP, we propose an effective RX beamforming scheme based on deep reinforcement learning (DRL), and develop a deep Q-network (DQN) algorithm to train and determine the optimal RX beam direction with the purpose of maximizing average RSP. Through extensive simulations, we demonstrate that the proposed scheme has better performance than the four baseline schemes in terms of average RSP at most positions on the railway.

3 citations

Proceedings ArticleDOI
10 Apr 2016
TL;DR: Channel measurements show that the propagation environment becomes more directive at 18 GHz compared to 2 GHz, and areas of further development of ray-tracing tools are highlighted to ensure agreement between simulations and measurements.
Abstract: To enable the fifth generation of mobile communication (5G), understanding of the expected radio channel is needed. This knowledge will enable modelling of the radio environment for use in network planning and development. Due to this, channel measurements were conducted at 18 GHz and 2 GHz for comparison of angular power distribution. The chosen environment for the measurement is an outdoor urban scenario with a transmitting base-station at rooftop level and a receiver at ground level. The measurements show that the propagation environment becomes more directive at 18 GHz compared to 2 GHz. Additional, simulations using a commercial ray-tracing tool where conducted. This to highlight areas of further development of ray-tracing tools to ensure agreement between simulations and measurements.

3 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...As mentioned 60 GHz have been studied and more relevant for 5G also 28 and 38 GHz as presented in [9], [10], [11]....

    [...]

Proceedings ArticleDOI
01 Oct 2018
TL;DR: Numerical results demonstrates that the blocking is beneficial for improving the secrecy performance in the capacity threshold-based on-off transmission scheme, and there is no obvious performance difference between NCE and CE scenarios in large blockage density environment.
Abstract: This paper investigates secure on-off transmission scheme of millimeter wave (mmWave) systems in the presence of randomly distributed eavesdroppers. To characterize spatially distributed eavesdroppers, a stochastic geometry approach is considered. We derive the closed-form expressions of secrecy outage probability (SOP) in term of non-cooperative eavesdroppers (NCE) and cooperative eavesdroppers (CE) scenarios, respectively. In addition, some asymptotic analysis of the SOP for the two scenarios has been given. Numerical results demonstrates that the blocking is beneficial for improving the secrecy performance in the capacity threshold-based on-off transmission scheme, and there is no obvious performance difference between NCE and CE scenarios in large blockage density environment. In addition, there exists an optimal transmit power to achieve the security of higher level in the on-off transmission scheme.

3 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...INTRODUCTION DUE to the large available bandwidth in mmWave frequencies, it has become one of the key technologies to provide high-speed data rate in the future 5G networks [1]....

    [...]

Journal ArticleDOI
TL;DR: The mode selection mechanism is proposed using multi-criteria for decision-making technique, the mode selection mechanisms based on Simple Additive Weighting algorithm is used to wisely connect and switch between the available modes and shows better performance based on user preferences.
Abstract: Device-to-Device (D2D) communication is an important component of the 5G mobile networks. D2D communication enables users to communicate either directly without network assistance or with minimum signalling information through a base station (BS). Hence, D2D communication can enhance system capacity, increase spectral efficiency, improve throughput and reduce latency. One of the main challenges in D2D communications that when a potential D2D pair can switch between direct and conventional cellular communications, there lies a challenge in identifying D2D mode selection between communicating devices (i.e. a D2D pair). This paper aims to evaluate the mode selection mechanism in different environments (indoor, outdoor). The mode selection mechanism is proposed using multi-criteria for decision-making technique, the mode selection mechanism based on Simple Additive Weighting (SAW) algorithm is used to wisely connect and switch between the available modes. The evaluation of the proposed mechanism for indoor environment and outdoor environment shows better performance based on user preferences.

3 citations

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]