scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Proceedings ArticleDOI
01 Aug 2016
TL;DR: A novel coding approach that combines frequency and code multiplexing is proposed and a low power on-site coding with beamforming is proposed, which reduces power requirements for the digitizer by a factor of 8 to 32.
Abstract: We propose a new class of transceivers for secure communication and interference mitigation, operating over large bandwidths on the order of 10GHz. Specifically, a novel coding approach that combines frequency and code multiplexing is proposed. Equally important is power and hardware reduction by implementing a low power on-site coding with beamforming. The latter reduces power requirements for the digitizer by a factor of 8 to 32. In this paper, we present a description of the proposed high data system and integrated coding scheme. System performance is also evaluated in presence of interference and noise analysis is conducted to assess the impact of coding for different noise floors. Preliminary results show minimal degradation using orthogonal Walsh-Hadamard codes using ideal filters and a minimum digitizer resolution of 5 bits.

2 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...Equally important is power and hardware reduction by implementing a low power on-site coding with beamforming....

    [...]

Patent
20 Jul 2015
TL;DR: In this article, the authors proposed a method to receive the first information indicative of a request for service for the mobile device, wherein the network comprises a first base station (BS) device configured to provide downlink communication between the first BS device and the mobile devices, and another BS device configured for uplink communication between mobile devices and the other BS device.
Abstract: Harmonization of wireless communication service delivery is facilitated. One method comprises receiving, by an anchor node, from a mobile device communicatively coupled to a network, first information indicative of a request for service for the mobile device, wherein the network comprises a first base station (BS) device configured to provide downlink communication between the first BS device and the mobile device, and another BS device configured for uplink communication between the mobile device and the other BS device. The first BS device can be a millimeter wave (mmW) BS device in some embodiments. The method also comprises generating information indicative of a transmission parameter for a type of access to the network device. The transmission parameter can be generated based on various criteria including, but not limited to, whether there is line-of-sight between the first device and the mobile device, the requested service and/or the availability of network resources.

2 citations

Proceedings ArticleDOI
01 Sep 2019
TL;DR: This work forms the problem as a multi-tier queueing system, and by leveraging stochastic geometry, presents a tractable analytical framework to investigate the signal-to-interference-plus-noise-ratio (SINR) distribution of devices at each tier, thereby computing the expected delay and delay outage probabilities for each device.
Abstract: For current and future wireless networks, applications such as Industrial Internet of Things (IoT) and vehicle-to-vehicle (V2V) communications are strictly delay-sensitive, requiring low latency. In order to minimize end-to-end delay of each device in such machine-to-machine (M2M) communications, we propose buffer-aided multi-hop relaying networks in the uplink, for high data rates at mmWave carrier frequencies. We formulate the problem as a multi-tier queueing system, and by leveraging stochastic geometry, we present a tractable analytical framework to investigate the signal-to-interference-plus-noise-ratio (SINR) distribution of devices at each tier, thereby computing the expected delay and delay outage probabilities for each device, which are key metrics to characterize overall network delay performance. Numerical results based on multiple cells in a dense urban scenario validate analytical results, and show that our minimum-delay relaying scheme achieves significant lower average end-to- end delay and higher effective capacity than direct association or a state-of-art max-SINR relaying scheme.

2 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...In future wireless systems millimeter-wave (mmWave) bands (30 GHz-300 GHz) have attracted much attention for their potential to fulfil multi-Gbps transmission rates in future mobile broadband access [1]....

    [...]

Journal ArticleDOI
TL;DR: A new opportunistic wiretapping and jamming (OWJ) attack model in mmWave wireless networks is proposed and it is demonstrated that the new attack can more significantly degrade the network security performance than the pure wiretapping or jamming attack.
Abstract: While the millimeter-wave (mmWave) communication is robust against the conventional wiretapping attack due to its short transmission range and directivity, this paper proposes a new opportunistic wiretapping and jamming (OWJ) attack model in mmWave wireless networks. With OWJ, an eavesdropper can opportunistically conduct wiretapping or jamming to initiate a more hazardous attack based on the instantaneous costs of wiretapping and jamming. We also provide three realizations of the OWJ attack, which are mainly determined by the cost models relevant to distance, path loss and received power, respectively. To understand the impact of the new attack on mmWave network security, we first develop novel approximation techniques to characterize the irregular distributions of wiretappers, jammers and interferers under three OWJ realizations. With the help of the results of node distributions, we then derive analytical expressions for the secrecy transmission capacity to depict the network security performance under OWJ. Finally, we provide extensive numerical results to illustrate the effect of OWJ and to demonstrate that the new attack can more significantly degrade the network security performance than the pure wiretapping or jamming attack.

2 citations

Proceedings ArticleDOI
13 May 2019
TL;DR: This work studies a triple hybrid FSO/MMW/RF system, operating over turbulent atmospheric channel with pointing errors, along with Weibull and Rayleigh fading for the MMW and RF links, respectively, and derives the mathematical expression for the outage performance estimation of the triple hybrid system.
Abstract: The continuously expanding demand for faster and more efficient communication, dictates the research and development of more contemporary telecommunication systems, such as the FSO, characterized by their very high data rates and bandwidth. However, the optical beam, propagating through the atmosphere, suffers from phenomena with negative impact on the performance of the overall communication system. A commonly used technique to counterbalance these obstacles is to use a hybrid FSO/RF or FSO/MMW system. In this work, we further develop this idea, by studying a triple hybrid FSO/MMW/RF system, operating over turbulent atmospheric channel with pointing errors, along with Weibull and Rayleigh fading for the MMW and RF links, respectively. The mathematical expression for the outage performance estimation of the triple hybrid system is derived and its efficiency is verified through the numerical results.

2 citations

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]