scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Proceedings ArticleDOI
01 Sep 2019
TL;DR: This paper presents a simplified approach for sidelobe reduction by stacking multiple uniform linear arrays of different size to reduce the sidelobes across the horizontal plane based on the relation between the number of antenna elements and the directions of null and sidelobe maxima.
Abstract: The performance of multi-user millimeter-wave (mmW) systems is limited by relatively high sidelobe levels (SLLs) of antenna arrays. Per-antenna amplitude control can be used to adjust the amplitudes to reduce the SLL, but the reduction is often achieved at the cost of reduced transmitted power. Large two-dimensional (2D) antenna panels used in mmW phased arrays, however, allow the 2D antenna configuration to be reconfigured to reduce the SLL. In this paper, we present a simplified approach for sidelobe reduction by stacking multiple uniform linear arrays of different size to reduce the sidelobes across the horizontal plane. The approach is based on the relation between the number of antenna elements and the directions of null and sidelobe maxima. The sidelobe reduction is demonstrated by both simulations and measurements. The measurements are carried out in an anechoic chamber at 28 GHz center frequency using a 100 MHz wide modulated 5GNR waveform.

2 citations

Dissertation
19 Sep 2019
TL;DR: In this article, the authors demonstrate a 30 GHz oscillator with a record 1/f 3 PN corner of ∼100 kHz, which is an order-of-magnitude better than all previous mmW oscillators.
Abstract: The fifth generation (5G) cellular communications in millimeter-wave (mmW) bands (e.g. 28GHz) place very tough requirements on phase noise (PN) of local oscillators (LO). However, in the advanced CMOS technology (e.g., 28nm, 16nm, 7nm, ...), the intrinsic 1/f current noise of MOS transistor is increasingly worsening. It could adversely affect the PN of the LO significantly, especially the flicker PN, leading to a very high 1/f 3 PN corner (usually exceeding 1MHz), which is difficult to be attenuated by a mmW PLL. On the other hand, the current literature is full of conflicts and confusing theories about the flicker noise upconversion, with a large number of ambiguities in the RF range, let alone in the mmW range. Thus, lowering the 1/f 3 PN and figuring out its actual mechanisms are highly desired for 5G mmW communications. In this thesis, we demonstrate, for the first time ever, a 30 GHz oscillator with a record 1/f 3 PN corner of ∼100 kHz, which is an order-of-magnitude better than all previous mmW oscillators. Thanks to the special considerations in the common-mode (CM) return path, 2nd harmonic resonance is accurately implemented in this 30GHz oscillator. Firstly, we numerically verify and illustrate how the 2nd harmonic resonance could reduce the 1/f 3 PN, featuring the proposed simulation techniques of the 1/f noise modulation function (NMF) (i.e., I1/f,rms(t)) and impulse sensitivity function (ISF) (i.e., hDS(t)) (based on a periodic transfer function (PXF)). To physically explain the complex process of flicker noise modulation, a new 1/f model is introduced, considering both a carrier number fluctuation (CNF) and a correlated mobility fluctuation (CMF). Further, we identify and numerically verify a new flicker noise reduction mechanism based on narrowing of a conduction angle, which has been presented in the literature but

2 citations


Additional excerpts

  • ...JSSC’17 [2] JSSC’13 [6] JSSC’16 [7] JSSC’13 [19] ESSCIRC’15 [20] ESSCIRC’15 [18] JSSC’16 [5] A-SSCC’15 [10] This Work Feature Implicit Resonan....

    [...]

Journal ArticleDOI
TL;DR: In this article , the authors proposed a 2D low computational cost mirror Kirchhoff approximation (MKA) and the design of simulation parameters to accurately predict the shadowing gain for an arbitrarily shaped conductor cylinder.
Abstract: This paper proposes a 2-dimensional low computational cost mirror Kirchhoff approximation (MKA) and the design of simulation parameters to accurately predict the shadowing gain for an arbitrarily shaped conductor cylinder. The disadvantages of the conventional MKA, such as lacking designs for the simulation parameters and a limited applicable range, have motivated the establishment of an extended MKA. The authors propose the design of the simulation parameters for MKA. The applicable range of MKA is extended to an arbitrarily shaped cylinder by multiple planes. This work finds that only the space domain of the zeroth plane and the angular spectrum domain of the last plane need separate windowing functions for accuracy and the calculation time. The details of those windowing functions are introduced, and their necessities are explained. The authors validate the proposed method for an elliptical conductor cylinder with the size of the human body at millimeter waves (17 GHz – 66.5 GHz). Simulations are conducted by changing the object’s location, direction, and frequencies. The results show that the proposed method presents a good accuracy, which has a low root-mean-square error of less than 0.5 dB by comparing it with a full-wave approach based on the method of moment. Furthermore, the calculation time is improved by 1.4 – 67.2 times by comparing it with the uniform theory of diffraction using special functions.

2 citations

Book ChapterDOI
01 Jan 2021
TL;DR: In this article, the authors consider various resource allocation methods for different radio access network (RAN) architecture; several authors have implemented some techniques and algorithms to achieve better resource allocation with the help of existing literature survey, explore ways to allocate the radio resources for next generation wireless communication.
Abstract: Resource allocation (RA) is a fundamental task in the design and management of wireless signal processing and communication networks. In a wireless communication, we must wisely allocate some available radio resources like time slots, transmission power, frequency band, and transmission waveforms or codes across multiple interfering links as to accomplish a better framework execution while guaranteeing user fairness and quality of service (QoS). In fifth generation (5G) of wireless communication system provides a better mobile service with improved QoS everywhere. Considering the dense deployment and more number of network nodes, RA and interference management are the important research issues in heterogeneous mobile networks. In this, we need to utilize the available radio resources efficiently, for that the RA is of much importance in future wireless communication systems (5G/6G). In this survey, we consider various resource allocation methods for different radio access network (RAN) architecture; several authors have implemented some techniques and algorithms to achieve better resource allocation with the help of existing literature survey, we explore ways to allocate the radio resources for next generation wireless communication.

2 citations

Journal ArticleDOI
11 Aug 2022
TL;DR: In this paper, the authors have emphasized on the perspectives of the Terahertz channel modeling in Internet of multimedia nano things (IoMNT) networks and a modulation technique targeting body-centric network is discussed.
Abstract: In this paper, the authors have emphasized on the perspectives of the Terahertz channel modeling in Internet of multimedia nano things (IoMNT) networks. A modulation technique targeting body-centric network is discussed. An analogy of a real Terahertz antenna is developed within a terahertz multi-layer modelling channel for a human skin tissue. As a result, the investigation of how signals at THz frequency band interact and transmit within the skin biomaterial. The human skin model used to collect data was selected to have four layers: epidermis, dermis, blood, and hypodermis, with the depth of the layers varying between normal human body values. It is revealed from the literature that the frequency and content have a substantial impact on path failure. The estimated path loss could thus differ considerably, but for a human skin model with depths of 0.21 mm, 1.23 mm, 1.38 mm, and 3.76 mm, the frequencies of 0.5-1.5 THz at the end distance resulted in a path loss estimated about 250-350 dB.

2 citations

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]