scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Proceedings ArticleDOI
09 Jul 2018
TL;DR: This work examines the effects of introducing relays into millimeter-wave residential access networks and shows that the rate distribution with relays can be close to the macro-only rate distribution, even in the case that the single-hop macro- only scenario is line-of-sight.
Abstract: We examine the effects of introducing relays into millimeter-wave residential access networks. Single-hop networks require professional customer equipment installation on rooftops in order to obtain the necessary line-of-sight properties. An alternative is a two-hop approach with relays that each serve multiple homes. In this case the final access links do not need to be line-of-sight (and so we can utilize customer-installed equipment). We evaluate multiple configurations and show that the rate distribution with relays can be close to the macro-only rate distribution, even in the case that the single-hop macro-only scenario is line-of-sight.

2 citations

Proceedings ArticleDOI
TL;DR: A novel resource allocation framework is proposed that exploits users' context, in terms of user application (UA) delay requirements, to maximize the quality-of-service (QoS) of a dual-mode base station.
Abstract: One of the most promising approaches to overcome the drastic channel variations of millimeter wave (mmW) communications is to deploy dual-mode base stations that integrate both mmW and microwave (\muW) frequencies. Reaping the benefits of a dual-mode operation requires scheduling mechanisms that can allocate resources efficiently and jointly at both frequency bands. In this paper, a novel resource allocation framework is proposed that exploits users' context, in terms of user application (UA) delay requirements, to maximize the quality-of-service (QoS) of a dual-mode base station. In particular, such a context-aware approach enables the network to dynamically schedule UAs, instead of users, thus providing more precise delay guarantees and a more efficient exploitation of the mmW resources. The scheduling of UAs is formulated as a one-to-many matching problem between UAs and resources and a novel algorithm is proposed to solve it. The proposed algorithm is shown to converge to a two-sided stable matching between UAs and network resources. Simulation results show that the proposed approach outperforms classical CSI-based scheduling in terms of the per UA QoS, yielding up to 36% improvement. The results also show that exploiting mmW resources provides significant traffic offloads reaching up to 43% from \muW band.

2 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...Therefore, meeting quality-ofservice (QoS) constraints of delay-sensitive applications, such as HDTV and video conferencing, is challenging at mmW frequencies [2]–[8]....

    [...]

  • ...However, field measurements [2] have shown that the availability of mmW links can be highly intermittent, due to blockage by various obstacles....

    [...]

  • ...Communication at high frequency, millimeter wave (mmW) bands is an effective way to boost the performance of 5G cellular networks [1], [2]....

    [...]

Proceedings ArticleDOI
01 Sep 2018
TL;DR: An efficient resource allocation scheme is proposed which yields promising results at low computational complexity in the downlink of user cooperation enable traffic offloading in an urban traffic hotspot scenario.
Abstract: User cooperation enabled traffic offloading has been shown to be a promising concept to serve a large number of mobile stations in the uplink of an urban traffic hotspot scenario. Multiple mobile stations form a virtual antenna array and jointly access the nearby WLAN access points, achieving large gains compared to non-cooperating schemes. In this paper we consider the corresponding downlink, where the non-cooperating WLAN access points individually transmit their signals to the mobile stations in the hotspot. In order to decode these signals, each mobile station then quantizes its received signal and broadcasts it to the other cooperating mobile stations. The channel access times allocated to the cooperating mobile stations in the broadcasting phase thereby strongly impact the quantization rates and eventually the system performance. Hence, these resources have to be assigned carefully, leading to a non-convex optimization problem. In this context, we propose an efficient resource allocation scheme which yields promising results at low computational complexity. Applying this scheme we then evaluate the downlink of user cooperation enable traffic offloading in an urban traffic hotspot scenario.

2 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...Furthermore, the performance of massive MIMO systems is limited by the potentially correlated scattering [1] and in mmW communication, the high number of necessary RF chains is a limiting factor [2]....

    [...]

Journal ArticleDOI
TL;DR: In this paper , the beam tracking problem was formulated as a partially observable Markov decision process problem and an actor-critic reinforcement learning framework was developed to obtain an efficient training beam sequence design.
Abstract: In this paper, we consider a millimeter wave multiple-input single-output tracking system, where the time-varying angle of departure (AoD) is assumed to change following a discrete state Markov process. Depending on whether the associated AoD transition function is available or not, we propose two different training beam sequence design approaches. Specifically, in the case when the AoD transition function is available, we leverage the maximum a posteriori criterion to estimate the updated AoD in each beam tracking period. Since it is infeasible to derive an explicit expression for the resultant estimation error rate, we turn to its upper bound, which possesses a closed-form expression and is therefore used as the objective function to optimize the training beam sequence. Considering the complicated objective function and the unit modulus constraints imposed by the analog phase shifters, we resort to a particle swarm algorithm to solve the formulated optimization problem. In the case when the AoD transition function is unavailable, we turn to the maximum likelihood criterion for AoD estimation. To cope with the unknown AoD transition function, we reformulate the beam tracking problem as a partially observable Markov decision process problem and develop an actor-critic reinforcement learning framework to obtain an efficient training beam sequence design. Numerical results demonstrate superiorities of the proposed training beam sequence design approaches for both two cases.

2 citations

Proceedings ArticleDOI
01 Apr 2019
TL;DR: A novel low power fully digital architecture with blind beam tracking and spatial compression (FDA-BTSC) is introduced to reduce the rate and power dissipation of the I/O interface of a transceiver.
Abstract: A typical wireless transceiver includes a radio frequency integrated circuit (RFIC) and a baseband modem (BBIC) which are connected through an input/output (I/O) interface. The wide-bandwidth and high-rate millimeter wave (mmWave) systems put a heavy burden on the power dissipation of the I/O interface of a transceiver. In this paper, a novel low power fully digital architecture with blind beam tracking and spatial compression (FDA-BTSC) is introduced to reduce the rate and power dissipation of the I/O interface. Spatial compression of the received signal is feasible due to the sparsity of mmWave channels. An efficient spatial compression is realized through codebook-based beamforming and fast blind beam tracking. Provided analysis and evaluations show that the proposed architecture is potentially as power efficient as existing analog and hybrid mmWave architectures. In addition, FDA- BTSC significantly drops the baseband processing complexity and power consumption level to the same order as hybrid beamforming, while it maintains the advantages of the fully digital beamforming in terms of low latency of the beam management and high efficiency of the digital beamforming.

2 citations

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]