scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Posted ContentDOI
11 Mar 2022
TL;DR: In this paper , the authors proposed several UAV energy consumption minimization techniques through the aid of multiple intelligent reflecting surfaces (IRSs) and derived a closed form expression for the UE achievable rate, resulting in tractable optimization problems.
Abstract: Abstract Unmanned aerial vehicle (UAV) communication systems are in active study due to its various applications. However, UAV communication systems suffer from energy consumption, which limits the flying time of UAVs. In this paper, we propose several UAV energy consumption minimization techniques through the aid of multiple intelligent reflecting surfaces (IRSs). In specific, we introduce a tractable model to effectively capture the characteristics of multiple IRSs and multiple user equipments (UEs). Then, we derive a closed form expression for the UE achievable rate, resulting in tractable optimization problems. Accordingly, we effectively solve the optimization problems by adopting the successive convex approximation technique. To compensate for the high complexity of the optimization problems, we propose a low complexity algorithm that has marginal performance loss. In the numerical results, we show that the proposed algorithms can save UAV energy consumption significantly compared to the benchmarks, justifying that exploiting the IRSs is indeed favorable to UAV energy consumption minimization.

1 citations

OtherDOI
16 May 2020
TL;DR: In this article, a survey-style study on self-organized seamless coverage in 5G, covering millimeter-wave features and its indoor and outdoor coverage along with some machine learning techniques are presented.
Abstract: Densely deployment of the small cells in 5G networks will bring high‐quality service to the end users as well as will solve the small footprint coverage problem of millimeter‐waves. The increase in the number of small cells will require self‐organized systems to enable the seamless transaction between heterogeneous network environment. Therefore, a survey‐style study on self‐organized seamless coverage in 5G, covering millimeter‐wave features and its indoor and outdoor coverage along with some machine learning techniques are presented in this article.

1 citations

31 Jul 2015
TL;DR: In this article, the design of an active feed circuit for antenna arrays with reconfigurable radiation pattern is presented, where the adopted circuit topology is composed of phase shifters and variable gain amplifiers which enable dynamic control of the amplitudes and phases of the array current excitations.
Abstract: In this paper, the design of an active feed circuit for antenna arrays with reconfigurable radiation pattern is presented. The adopted circuit topology is composed of phase shifters and variable gain amplifiers which enable the dynamic control of the amplitudes and phases of the array current excitations. The set of equations needed to configure the circuit components is derived and the measured patterns of an array fed by the proposed circuit are also shown in the paper, as well as the details for the fabrication of the circuit prototype. The excellent agreement between the theoretical and measured patterns validates both the design procedure and solutions adopted throughout the work.

1 citations

Proceedings ArticleDOI
Chang Cao1, Xiongfei Zou1, Hua Yan1, David Steer1, Stan X. Lu1, Jia He1, Guangjian Wang1 
01 Dec 2016
TL;DR: The measured propagation characteristics of E-Band radio signals measured in indoor office and closed meeting room scenarios for LOS and NLOS conditions confirm the suitability of E Band radio channels for future 5G applications indoors, and serve to guide the design of future millimeter-wave mobile communication radio systems.
Abstract: We discuss the measured propagation characteristics of E-Band radio signals measured in indoor office and closed meeting room scenarios for LOS (Line-of-Sight) and NLOS (Non-Line-of-Sight) conditions. A new wideband channel sounder with 2 GHz bandwidth (i.e. 72 GHz ~ 74 GHz) was used for the propagation measurements. In both the LOS and NLOS scenarios, a horn antenna with 40° HPBW was used at the transmitter and a scanned directional horn antenna with 10° HPBW was used at the receiver. These measurement results show a path loss exponent of about 2.1 for LOS and 3.4 for NLOS respectively. These measurements are quite similar to the values observed for the traditional cellular frequency bands below 6 GHz. The measurements confirm the suitability of E Band radio channels for future 5G applications indoors, and serve to guide the design of future millimeter-wave mobile communication radio systems.

1 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...Recently, a few studies have also shown the potential of E-Band propagation for indoor and outdoor coverage for wireless access [4][5]....

    [...]

Journal ArticleDOI

1 citations


Cites background or methods from "Millimeter-Wave Cellular Wireless N..."

  • ...When mode TE11 in a circular waveguide occupies a dominant position as the EM wave, the phase difference of the E-field caused by the radius deformation of the waveguide can be shown by formula (1) as follows:...

    [...]

  • ...Meanwhile, formula (1) can be employed to conduct calculation on the phase difference between Ea and Eb and the proposed antenna produces the mode of TE11 at the circular waveguide of P3, which is shown in Figure 3B....

    [...]

  • ..., due to its substantial usable bandwidth, and it can satisfy carrying capacity and spectral characteristics.(1-3) For the purpose of obtaining signal of high quality, it is highly demanded that the millimeter-wave antenna is required to be responsible for having high gain, low loss, wide band and good transceiver performance....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]