scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Journal ArticleDOI
16 May 2022
TL;DR: A novel first-order convex off-grid channel estimation approach to relieve the resolution loss from the angle quantization, which achieves superior performance compared to CS-based approach and existing off- grid algorithm in terms of computational complexity and estimation accuracy.
Abstract: In this paper, a fast optimization-based off-grid channel estimation method is proposed for millimeter wave (mmWave) or sub-terahertz(THz) cellular systems. Different from most existing works concerned with compressed sensing (CS) or off-grid methods, we proposed a novel first-order convex off-grid channel estimation approach to relieve the resolution loss from the angle quantization. Moreover, our proposed method is approximate inverse-free without costly matrix inversion. The numerical results demonstrate the effectiveness of the proposed FOG method, which achieves superior performance compared to CS-based approach and existing off-grid algorithm in terms of computational complexity and estimation accuracy.

1 citations

Proceedings ArticleDOI
29 Nov 2022
TL;DR: In this paper , the trade-off in performance based on the ratio of number of antennas to the number of data streams at the transmitter as well as the receiver was investigated for multi-user MIMO communication systems.
Abstract: The design procedure of hybrid beamforming is investigated considering multi-user MIMO communication systems taking into account the number of independent data streams for each user. Hybrid precoding and combining are utilized at the transmitter and receiver sides of millimeter-wave multi-user massive MIMO. The obtained results indicate the trade-off in performance based on the ratio of the number of antennas to the number of data streams at the transmitter as well as the receiver. The optimization of the number of parallel data streams per user allows the increase of transmitted data rate while keeping the levels of error vector magnitude (EVM) at acceptable levels.

1 citations

Proceedings ArticleDOI
09 Mar 2017
TL;DR: The normalization model for multi-tier mmWave cellular networks fully meets requirements of network performance analysis, and it is simpler and clearer than the untransformed model, while an unexpected but sensible finding is that there is an optimal beam width that maximizes coverage probability in the case with beamforming alignment errors.
Abstract: Based on the distinguishing features of multi-tier millimeter wave (mmWave) networks such as different transmit powers, different directivity gains from directional beamforming alignment and path loss laws for line-of-sight (LOS) and non-line-of-sight (NLOS) links, we introduce a normalization model to simplify the analysis of multi-tier mmWave cellular networks. The highlight of the model is that we convert a multi-tier mmWave cellular network into a single-tier mmWave network, where all the base stations (BSs) have the same normalized transmit power 1 and the densities of BSs scaled by LOS or NLOS scaling factors respectively follow piecewise constant function which has multiple demarcation points. On this basis, expressions for computing the coverage probability are obtained in general case with beamforming alignment errors and the special case with perfect beamforming alignment in the communication. According to corresponding numerical exploration, we conclude that the normalization model for multi-tier mmWave cellular networks fully meets requirements of network performance analysis, and it is simpler and clearer than the untransformed model. Besides, an unexpected but sensible finding is that there is an optimal beam width that maximizes coverage probability in the case with beamforming alignment errors.

1 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...The investigations [3], [16] have demonstrated large bandwidth mmWave networks tend to be noise-limited in urban settings with blocking, in contrast to micro wave cellular networks, which are interference-limited....

    [...]

  • ...Faced with this challenge, cellular systems based on the millimeter wave (mmWave) bands has been attracted lots of interest, between 30 and 300 GHz, where the available bandwidths are much wider than today’s cellular networks [2], [3]....

    [...]

  • ...Moreover, as one of the candidate technologies in 5G, mmWave will be widely applied to various BSs with different transmit powers, antenna gains, etc [3]....

    [...]

Patent
23 Nov 2016
TL;DR: In this paper, the authors describe an antenna array having a plurality of dielectric antennas and a plurality-of-dielectric cores, each of which can have a structural configuration that enables flat surfaces of the plurality of antennas to be adjacent to each other.
Abstract: Aspects of the subject disclosure may include, for example, an antenna array having a plurality of dielectric antennas and a plurality of dielectric cores Each dielectric antenna of the plurality of dielectric antennas can have a structural configuration that enables flat surfaces of the plurality of dielectric antennas to be adjacent to each other Each dielectric antenna of the plurality of dielectric antennas further includes an aperture for radiating a wireless signal in response to an electromagnetic wave received by each dielectric antenna Each dielectric core of the plurality of dielectric cores can be coupled to a select one of the plurality of dielectric antennas to facilitate guiding a select one of a plurality of electromagnetic waves to the select one of the plurality of dielectric antennas Other embodiments are disclosed

1 citations

Dissertation
28 Oct 2017
TL;DR: This chapter explores the potential of physical layer security in mmWave ad hoc networks and characterize the impact of mmWave channel characteristics, random blockages, and antenna gains on the secrecy performance.
Abstract: This thesis explores three directions of energy-efficiency(EE) and spectral efficiency(SE) under 5G wireless networks. Firstly, we study the optimization of power control for the small (two-user) interference channel in which the terminals are time-switched between the signal-processing and energy-harvesting phases. Both energy harvesting and signal-processing processes are during the downlink. The objective is to maximize the sum-rate, subject to the minimum data and harvested energy constraints at the receivers, assuming a fixed time-switching coefficient. The key contribution is using a geometric approach that analyzes the feasible region governed by the constraints, which gives rise to the optimal power control solution. Another topic focuses on the performance analysis of two user association schemes for wireless power transfer (WPT) in heterogeneous networks (HetNets) massive multiple-input multiple-output (MIMO) antennas, downlink for the WPT in the first phase and uplink for wireless information transfer (WIT) in the second phase. The two user association schemes considered in the analysis are the Downlink received signal power (DRSP) based approach for maximizing the harvested energy; and the uplink received signal power (URSP) based approach for minimizing the uplink path loss. In the downlink, we adopt a low-complexity approach for massive MIMO power transfer to recharge users. Then we derive the average uplink achievable rate with the harvested energy. The last topic analyses a large-scale mmWave ad hoc network in the randomly located eavesdroppers area, where eavesdroppers can still intercept the confidential messages, since they may reside in the signal beam. This chapter explores the potential of physical layer security in mmWave ad hoc networks. Specifically, we characterize the impact of mmWave channel characteristics, random blockages, and antenna gains on the secrecy performance. For the special case of the uniform linear array (ULA), a tractable approach is proposed to evaluate the average achievable secrecy rate.

1 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...The transmission rate of a typical node can be set as Rt = log2 (1+ γo) and thus the average rate R is achievable; and 2) for high-mobility scenario, the coherence time in mmWave frequencies is around an order of magnitude lower than that at sub-6 GHz as the Doppler shift linearly scales with frequency [90, 91], and coding over many coherence intervals is possible, thus, the average rate R can also be achievable....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]