scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Proceedings ArticleDOI
20 Jun 2016
TL;DR: It is argued that the proposed scheme enables efficient and highly adaptive cell selection in the presence of the channel variability expected at mmWave frequencies.
Abstract: The millimeter wave (mmWave) frequencies offer the potential of orders of magnitude increases in capacity for next-generation cellular wireless systems. However, links in mmWave networks are highly susceptible to blocking and may suffer from rapid variations in quality. Connectivity to multiple cells - both in the mmWave and in the traditional lower frequencies - is thus considered essential for robust connectivity. However, one of the challenges in supporting multi-connectivity in the mmWave space is the requirement for the network to track the direction of each link in addition to its power and timing. With highly directional beams and fast varying channels, this directional tracking may be the main bottleneck in realizing robust mmWave networks. To address this challenge, this paper proposes a novel measurement system based on (i) the UE transmitting sounding signals in directions that sweep the angular space, (ii) the mmWave cells measuring the instantaneous received signal strength along with its variance to better capture the dynamics and, consequently, the reliability of a channel/direction and, finally, (iii) a centralized controller making handover and scheduling decisions based on the mmWave cell reports and transmitting the decisions either via a mmWave cell or conventional microwave cell (when control signaling paths are not available). We argue that the proposed scheme enables efficient and highly adaptive cell selection in the presence of the channel variability expected at mmWave frequencies.

103 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...The millimeter wave (mmWave) bands – roughly above 10 GHz – have attracted considerable attention for micro- and picocellular systems [1]....

    [...]

01 Jan 2013
TL;DR: In this paper, an efficient beam alignment technique using adaptive subspace sampling and hierarchical beam codebooks was proposed to solve the problem of spectrum reusability and flexible prototyping radio platform using software-defined radio (SDR).
Abstract: Mobile data traffic will continue its tremendous growth in some markets, and has already resulted in an apparent radio spectrum scarcity. There is a strong need for more efficient methods to use spectrum resources, leading to extensive research on increasing spectrum reusability on flexible radio platforms. This study solves this problem in two sub topics, millimeter wave communication on wireless backhaul for spectrum reusability, and flexible prototyping radio platform using software-defined radio (SDR). Wireless backhaul has received significant attention as a key technology affecting the development of future wireless cellular networks because it helps to easily deploy many small size cells, an essential part of a high capacity system. Millimeter wave is considered a possible candidate for cost-effective wireless backhaul. In the outdoor deployment using a millimeter wave, beamforming methods are key techniques to establish wireless links in the 60 GHz to 80 GHz to overcome pathloss constraints (i.e., rainfall effect and oxygen absorption). The millimeter wave communication system cannot directly access the channel knowledge. To overcome this, a beamforming method based on codebook search is considered. The millimeter wave communication cannot access channel knowledge, therefore alternatively a beamforming method based on a codebook search is considered. In the first part, we propose an efficient beam alignment technique using adaptive subspace sampling and hierarchical beam codebooks. A wind sway analysis is presented to establish a notion of beam coherence time. This highlights a previously unexplored tradeoff between array size and wind-induced movement. Generally, it is not possible to use larger arrays without risking a performance loss from wind-induced beam misalignment. The performance of the proposed alignment technique is analyzed and compared with other search and alignment methods. Results show significant performance improvement with reduced search time. In the second part of this study, SDR is discussed as an approach toward flexible wireless communication systems. Most layers of SDR are implemented by software. Therefore, only a software change is needed to transform the type of radio system. The translation of the signal processing into software performed by a regular computer opens up a huge number of possibilities at a reasonable price and effort. SDR systems are widely used to build prototypes, saving time and money. In this project, a robust wireless communication system in high interference environment was developed. For the physical layer (PHY) of the system, we implemented a channel sub-bandding method that utilizes frequency division multiplexing to avoid interference. Then, to overcome a further interfered channel, Direct Spread Spectrum System (DSSS) was considered and implemented. These prototyped testbeds were evaluated for system performance in the interference environment.

103 citations

Proceedings ArticleDOI
10 Apr 2016
TL;DR: In this article, the authors present the first performance evaluation of TCP congestion control in next-generation mmWave networks, which can incorporate detailed models of the mmWave channel, beamforming and tracking algorithms, and builds on statistical channel models derived from real measurements in New York City, as well as detailed ray traces.
Abstract: The millimeter wave (mmWave) bands are likely to play a significant role in next generation cellular systems due to the possibility of very high throughput thanks to the availability of massive bandwidth and high-dimensional antennas. Especially in Non-Line-of-Sight conditions, significant variations in the received RF power can occur as a result of the scattering from nearby building and terrain surfaces. Scattering objects come and go as the user moves through the local environment. At the higher end of the mmWave band, rough surface scatter generates cluster-based small-scale fading, where signal levels can vary by more than 20 dB over just a few wavelengths. This high level of channel variability may present significant challenges for congestion control. Using our recently developed end-to-end mmWave ns3-based framework, this paper presents the first performance evaluation of TCP congestion control in next-generation mmWave networks. Importantly, the framework can incorporate detailed models of the mmWave channel, beamforming and tracking algorithms, and builds on statistical channel models derived from real measurements in New York City, as well as detailed ray traces.

103 citations

Proceedings ArticleDOI
21 Aug 2015
TL;DR: This paper presents an analytically tractable stochastic geometry model for urban wireless networks, where the locations of the nodes and the shadowing are highly correlated and different path loss functions can be applied to line-of-sight (LOS) and non-line of sight (NLOS) links.
Abstract: This paper presents an analytically tractable stochastic geometry model for urban wireless networks, where the locations of the nodes and the shadowing are highly correlated and different path loss functions can be applied to line-of-sight (LOS) and non-line-of-sight (NLOS) links. Using a distance-based LOS path loss model and a blockage (shadowing)-based NLOS path loss model, we are able to derive the distribution of the interference observed at a typical location and the joint distribution at different locations. When applied to cellular networks, this model leads to tractable expressions for the coverage probability (SINR distribution). We show that this model captures important features of urban wireless networks, which cannot be analyzed using existing models. The numerical results also suggest that even in the presence of significant penetration loss, ignoring the NLOS interference can lead to erroneous estimations on coverage. They also suggest that allowing users to be associated with NLOS BSs may provide a non-trivial gain on coverage.

102 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...While there are numerous applications of the MPLP-based model, A particularly interesting one is the analysis of the emerging millimeter-wave (mmWave) networks where the shadowing effect is even more severe than at conventional sub-6GHz bands [33], [34], making it more difficult to accurately gauge the system level performance using conventional models....

    [...]

Posted Content
TL;DR: In this paper, the fundamental elements and mechanisms associated with the Terahertz (THz) system architecture are analyzed and an up-to-date review paper is presented.
Abstract: Ultra-high bandwidth, negligible latency and seamless communication for devices and applications are envisioned as major milestones that will revolutionize the way by which societies create, distribute and consume information. The remarkable expansion of wireless data traffic that we are witnessing recently has advocated the investigation of suitable regimes in the radio spectrum to satisfy users' escalating requirements and allow the development and exploitation of both massive capacity and massive connectivity of heterogeneous infrastructures. To this end, the Terahertz (THz) frequency band (0.1-10 THz) has received noticeable attention in the research community as an ideal choice for scenarios involving high-speed transmission. Particularly, with the evolution of technologies and devices, advancements in THz communication is bridging the gap between the millimeter wave (mmW) and optical frequency ranges. Moreover, the IEEE 802.15 suite of standards has been issued to shape regulatory frameworks that will enable innovation and provide a complete solution that crosses between wired and wireless boundaries at 100 Gbps. Nonetheless, despite the expediting progress witnessed in THz wireless research, the THz band is still considered one of the least probed frequency bands. As such, in this work, we present an up-to-date review paper to analyze the fundamental elements and mechanisms associated with the THz system architecture.

102 citations

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]