scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Proceedings ArticleDOI
21 Feb 2017
TL;DR: This paper develops and experimentally demonstrates a novel noncoherent compressive strategy for sub-second path tracking with low overhead on today's mmWave hardware, and opens up a rich space for design of 5G mmWave networks.
Abstract: Millimeter (mm) wave picocellular networks have the potential for providing the 1000X capacity increase required to keep up with the explosive growth of mobile data. However, maintaining beams towards mobile users and adapting to frequent blockage, requires efficient, dynamic path tracking algorithms. In this paper, we develop and experimentally demonstrate a novel noncoherent compressive strategy for this problem, and compare it with conventional hierarchical and exhaustive beam scanning. To the best of our knowledge, this is the first experimental demonstration of practical, scalable path estimation for mmWave/60GHz picocells. Our results indicate the feasibility of sub-second path tracking with low overhead on today's mmWave hardware, and open up a rich space for design of 5G mmWave networks.

98 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...Recent works report propagation measurements supporting the feasibility of mmWave cellular (focusing on ranges of 200m, in bands other than 60 GHz) [19, 20, 3, 21]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors study the coverage of an RIS-assisted large-scale mmWave cellular network using stochastic geometry, and derive the peak reflection power expression of RIS and the downlink signal-to-interference ratio (SIR) coverage expression in closed forms.
Abstract: The use of millimeter-wave (mmWave) bandwidth is one key enabler to achieve the high data rates in the fifth-generation (5G) cellular systems. However, mmWave signals suffer from significant path loss due to high directivity and sensitivity to blockages, limiting its adoption within small-scale deployments. To enhance the coverage of mmWave communication in 5G and beyond, it is promising to deploy a large number of reconfigurable intelligent surfaces (RISs) that passively reflect mmWave signals towards desired directions. With this motivation, in this work, we study the coverage of an RIS-assisted large-scale mmWave cellular network using stochastic geometry, and derive the peak reflection power expression of an RIS and the downlink signal-to-interference ratio (SIR) coverage expression in closed forms. These analytic results clarify the effectiveness of deploying RISs in the mmWave SIR coverage enhancement, while unveiling the major role of the density ratio between active base stations (BSs) and passive RISs. Furthermore, the results show that deploying passive reflectors are as effective as equipping BSs with more active antennas in the mmWave coverage enhancement. Simulation results confirm the tightness of the closed-form expressions, corroborating our major findings based on the derived expressions.

97 citations

Journal ArticleDOI
TL;DR: This system exploits the spatial correlations between the sub-6 GHz and mmWave interfaces for beamforming and data transfer and proves using subadditivity analysis that the optimal scheduling policy is based on a single threshold that can be easily adopted despite high link variations.
Abstract: Communications in the millimeter wave (mmWave) band faces significant challenges due to variable channels, intermittent connectivity, and high energy usage. Moreover, speeds for electronic processing of data is of the same order as typical rates for mmWave interfaces, making the use of complex algorithms for tracking channel variations and adjusting resources impractical. In order to mitigate some of these challenges, we propose an architecture that integrates the sub-6 GHz and mmWave technologies. Our system exploits the spatial correlations between the sub-6 GHz and mmWave interfaces for beamforming and data transfer . Based on extensive experimentation in indoor and outdoor settings, we demonstrate that analog beamforming can be used in mmWave without incurring large overhead, thanks to the spatial correlations with sub-6 GHz. In addition, we incorporate the sub-6 GHz interface as a fallback (secondary) data transfer mechanism such that: 1) the negative effects of highly intermittent mmWave connectivity are mitigated and 2) the abundant mmWave capacity is fully exploited. To achieve these goals, we consider the problem of scheduling the arrival traffic over the mmWave or sub-6 GHz in order to maximize the mmWave throughput while delay (due to mmWave outages) is guaranteed to be bounded. We prove using subadditivity analysis that the optimal scheduling policy is based on a single threshold that can be easily adopted despite high link variations. Numerical results demonstrate that our scheduler provides a bounded mmWave delay performance, while it achieves a similar throughput performance as the throughput-optimal policies (e.g., MaxWeight).

97 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...For example, in [9] and [10], a model based on isolated clusters is argued to be more appropriate to capture the observed reflections in mmWave, as opposed to the uniform distribution across the delay taps....

    [...]

  • ...Extensive evaluations of mmWave propagation taken from hundreds of different locations and settings also exist, by the same group [2], [9], [10] as well as others [11]....

    [...]

Journal ArticleDOI
TL;DR: This paper focuses on the evolution and development of mm-wave array antenna and its implementation for wireless communication and numerous other related areas and the new design aspects and research directions are unfolded.
Abstract: The enormous growth of wireless data traffic in recent years has made the millimeter-wave (mm-wave) technology as a good fit for high-speed communication systems. Extensive works are continuing from the device to system, to the radio architecture, to the network to support the communication in mm-wave frequency ranges. To support this extensive high data rate, beam forming is found to be the key-enabling technology. Hence, an array antenna design is an extremely important issue. The beam-forming arrays are chosen to achieve the desired link capacity considering the high path loss and atmospheric loss at mm-wave frequencies and also to increase the coverage of the mm-wave communication system. There are diverse design challenges of the array due to the small size, use of large numbers of antennas in close vicinity, integration with radio-frequency (RF) front ends, hardware constraints, and so on. This paper focuses on the evolution and development of mm-wave array antenna and its implementation for wireless communication and numerous other related areas. The scope of the discussion is extended on the reported works in every sphere of mm-wave antenna array design, including the selection of antenna elements, array configurations, feed mechanism, integration with front-end circuitry to understand the effects on system performance, and the underlying reason of it. The new design aspects and research directions are unfolded as a result of this discussion.

97 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...There are several challenges in the implementation of mm-wave communications [186]....

    [...]

Journal ArticleDOI
TL;DR: It is demonstrated that the secrecy performance of the millimeter wave system is significantly influenced by the relationship between the legitimate user's and the eavesdropper’s spatially resolvable paths, which is different from the wireless systems with statistically independent channel models.
Abstract: Exploiting millimeter wave is an effective way to meet the data traffic demand in the 5G wireless communication system. In this paper, we study secure transmissions under slow fading channels with multipath propagation in millimeter wave systems. Concerning the new propagation characteristics of millimeter wave, we investigate three transmission schemes, namely, maximum ratio transmitting (MRT) beamforming, artificial noise (AN) beamforming, and partial MRT (PMRT) beamforming. We evaluate the secrecy performance by analyzing both the secrecy outage probability (SOP) and the secrecy throughput for each scheme. Particularly, for the AN scheme, we derive a closed-form expression for the optimal power allocation ratio of the information signal power to the total transmit power that minimizes the SOP, as well as obtain an explicit solution on the optimal transmission parameters that maximize the secrecy throughput. By comparing the secrecy performances achieved by different strategies, we demonstrate that the secrecy performance of the millimeter wave system is significantly influenced by the relationship between the legitimate user’s and the eavesdropper’s spatially resolvable paths, which is different from the wireless systems with statistically independent channel models. In the absence of the common path between the legitimate user and the eavesdropper, MRT beamforming is the best scheme. In the presence of common paths, AN beamforming and PMRT beamforming show their respective superiorities depending on the transmit power and the number of common paths. Numerical results are provided to verify our theoretical analysis.

97 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...available spectrum possessed by millimeter wave [13], [14]....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]