scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the authors present a guide to the key challenges facing the deployment of this network scheme and contemplate the solutions being proposed for the main bottlenecks facing cell-free communications.
Abstract: Densification of network base stations is indispensable to achieve the stringent Quality of Service (QoS) requirements of future mobile networks. However, with a dense deployment of transmitters, interference management becomes an arduous task. To solve this issue, exploring radically new network architectures with intelligent coordination and cooperation capabilities is crucial. This survey paper investigates the emerging user-centric cell-free massive Multiple-input multiple-output (MIMO) network architecture that sets a foundation for future mobile networks. Such networks use a dense deployment of distributed units (DUs) to serve users; the crucial difference from the traditional cellular paradigm is that a specific serving cluster of DUs is defined for each user. This framework provides macro diversity, power efficiency, interference management, and robust connectivity. Most importantly, the user-centric approach eliminates cell edges, thus contributing to uniform coverage and performance for users across the network area. We present here a guide to the key challenges facing the deployment of this network scheme and contemplate the solutions being proposed for the main bottlenecks facing cell-free communications. Specifically, we survey the literature targeting the fronthaul, then we scan the details of the channel estimation required, resource allocation, delay, and scalability issues. Furthermore, we highlight some technologies that can provide a management platform for this scheme such as distributed software-defined network (SDN). Our article serves as a check point that delineates the current status and indicates future directions for this area in a comprehensive manner.

56 citations

Journal ArticleDOI
TL;DR: This paper derives the spatial distribution of the set of decoding relays whose received signal-to-noise ratio (SNR) are above the minimum SNR threshold and selects a relay that has minimum path loss to the receiver and derives the achievable coverage due to this selection.
Abstract: In this paper, we investigate the coverage probability improvement of a millimeter wave network due to the deployment of spatially random decode-and-forward (DF) relays. The source and receiver are located at a fixed distance and all the relay nodes are distributed as a 2-D homogeneous Poisson point process (PPP). We first derive the spatial distribution of the set of decoding relays whose received signal-to-noise ratio (SNR) are above the minimum SNR threshold. This set is a 2-D inhomogeneous PPP. From this set, we select a relay that has minimum path loss to the receiver and derive the achievable coverage due to this selection. The analysis is developed using tools from stochastic geometry and is verified using Monte-Carlo simulation. The coverage probabilities of the direct link without relaying, a randomly chosen relay link, and the selected relay link are compared to show the significant performance gain when relay selection is used. We also analyze the effects of beam misalignment and different power allocations at the source and relay on coverage probability. In addition, rate coverage and spectral efficiency are compared for direct and selected relay links to show impressive performance gains with relaying.

56 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...Relaying may provide seamless coverage to NLOS regions such as the areas blocked by buildings and may also extend indoor coverage to outdoors [8]....

    [...]

  • ...The feasibility of these bands has been established by mmWave propagation studies [6]–[8]....

    [...]

  • ...Consequently, mmWave links are susceptible to outage and poor coverage even at nearby NLOS receivers [8]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, an uplink-based multi-connectivity approach is proposed for mm-wave networks, which enables less consuming, better performing, faster and more stable cell selection decisions with respect to a traditional downlink-based standalone scheme.
Abstract: The millimeter-wave (mm-wave) frequencies offer the potential of orders of magnitude that increases in capacity for next-generation cellular systems. However, links in mm-wave networks are susceptible to blockage and may suffer from rapid variations in quality. Connectivity to multiple cells at mm-wave and/or traditional frequencies is considered essential for robust communication. One of the challenges in supporting multi-connectivity in mm-waves is the requirement for the network to track the direction of each link in addition to its power and timing. To address this challenge, we implement a novel uplink measurement system that, with the joint help of a local coordinator operating in the legacy band, guarantees continuous monitoring of the channel propagation conditions and allows for the design of efficient control plane applications, including handover, beam tracking, and initial access. We show that an uplink-based multi-connectivity approach enables less consuming, better performing, faster and more stable cell selection, and scheduling decisions with respect to a traditional downlink-based standalone scheme. Moreover, we argue that the presented framework guarantees: 1) efficient tracking of the user in the presence of the channel dynamics expected at mm-waves and 2) fast reaction to situations in which the primary propagation path is blocked or not available.

55 citations

Journal ArticleDOI
TL;DR: This paper proposes a generalized spatial modulation aided mm-wave MIMO system to convey an extra data stream via the index of the active antennas group, while no extra RF chain is required, and proposes a hybrid analog and digital precoding scheme for SE maximization.
Abstract: The application of hybrid precoding in millimeter wave (mm-wave) multiple-input multiple-output (MIMO) systems has been proven effective for reducing the number of radio frequency (RF) chains. However, the maximum number of independent data streams is conventionally restricted by the number of RF chains, which limits the spatial multiplexing gain. To further improve the achievable spectral efficiency (SE), in this paper we propose a generalized spatial modulation aided mm-wave MIMO system to convey an extra data stream via the index of the active antennas group, while no extra RF chain is required. Moreover, we propose a hybrid analog and digital precoding scheme for SE maximization. Based on a narrowband mm-wave-MIMO channel assumption, a closed-form lower bound is derived to quantify the achievable SE of the proposed system. By utilizing this lower bound as the cost function, a two-step algorithm is proposed to optimize the hybrid precoder. The proposed algorithm not only utilizes the concavity of the cost function over the digital power allocation vector but also invokes the convex $\ell _\infty$ relaxation to handle the non-convex constraint imposed by analog precoding. Finally, the proposed scheme is shown via simulations to outperform state-of-the-art mm-wave MIMO schemes in terms of achievable SE.

55 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...THE concept of millimeter wave (mmWave) communication has been widely acknowledged to be an effective approach to substantially improve the system throughput for 5G telecommunication networks [1]–[3]....

    [...]

Journal ArticleDOI
TL;DR: An effective spatial framework for mmWave vehicle-to-everything (V2X) networks with VPSs is proposed by utilizing stochastic geometry approaches and the numerical results illustrate that platoons outperform individual vehicles in terms of road spectral efficiency and the considered system is LOS interference-limited.
Abstract: Due to the low traffic congestion, high fuel efficiency, and comfortable travel experience, vehicular platoon systems (VPSs) become one of the most promising applications in millimeter wave (mmWave) vehicular networks. In this paper, an effective spatial framework for mmWave vehicle-to-everything (V2X) networks with VPSs is proposed by utilizing stochastic geometry approaches. Base stations (BSs) are modeled by a Poisson point process and vehicles are distributed according to multiple type II Matern hard-core processes. To characterize the blockage process caused by vehicles, a closed-form expression is deduced to distinguish line-of-sight (LOS) and non-LOS transmission. This expression demonstrates that LOS links are independent of horizontal communication distances. Several closed-form probability density functions of the communication distance between a reference platoon and its serving transmitter (other platoons or BSs) are derived for analyzing the generated path loss. After designing three practical user association techniques, tractable expressions for coverage probabilities are figured out. Our work theoretically shows that the maximum density of VPSs exists and large antenna scales benefit the networks’ coverage performance. The numerical results illustrate that platoons outperform individual vehicles in terms of road spectral efficiency and the considered system is LOS interference-limited.

55 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...The reason is that the angular spread in mmWave communications with high directional beamforming is relatively small [36]....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]