scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Journal ArticleDOI
TL;DR: The most important use cases that can be currently foreseen are presented and the main technology trends and issues to reach a mature technology are identified, focusing on OFDM type waveforms that will enable a smooth integration with 4G and 5G.
Abstract: The future Internet of Things will integrate sensing and wireless communications. Among the multiple types of sensors to be used, sensors based on the radar principles are of interest for several applications, namely automotive. Dual functionality devices that integrate reflectometry and communication capabilities will be important to reduce development costs through the reuse of modules and to optimise the usage of radio resources, e.g. spectrum. This paper reviews the main trends that push for the merging of radar type sensors and wireless communications (RadCom). It presents the most important use cases that can be currently foreseen and identifies the main technology trends and issues to reach a mature technology, focusing on OFDM type waveforms that will enable a smooth integration with 4G and 5G.

48 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilised mmW frequency spectrum for future broadband cellular communication networks [37, 40]....

    [...]

Posted Content
TL;DR: In this paper, a hybrid analog and digital precoding scheme was proposed to improve the achievable spectral efficiency (SE) of a generalized spatial modulation (GenSM) aided mmWave MIMO system to convey an extra data stream via the index of the active antennas group.
Abstract: The application of hybrid precoding in millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems has been proved effective for reducing the number of radio frequency (RF) chains. However, the maximum number of independent data streams is conventionally restricted by the number of RF chains, which leads to limiting the spatial multiplexing gain. To further improve the achievable spectral efficiency (SE), in this paper we propose a novel generalized spatial modulation (GenSM) aided mmWave MIMO system to convey an extra data stream via the index of the active antennas group, while no extra RF chain is required. Moreover, we also propose a hybrid analog and digital precoding scheme for SE maximization. More specifically, a closed-form lower bound is firstly derived to quantify the achievable SE of the proposed system. By utilizing this lower bound as the cost function, a two-step algorithm is proposed to optimize the hybrid precoder. The proposed algorithm not only utilizes the concavity of the cost function over the digital power allocation vector, but also invokes the convex $\ell_\infty$ relaxation to handle the non-convex constraint imposed by analog precoding. Finally, the proposed scheme is shown via simulations to outperform state-of-the-art mmWave MIMO schemes in terms of achievable SE.

48 citations

Proceedings ArticleDOI
06 Jul 2020
TL;DR: This paper develops a reinforcement learning algorithm, called adaptive Thompson sampling (ATS), that MAMBA embodies for the selection of appropriate beams and transmission rates along these beams, and shows that it improves the link throughput by up to 182%, compared to the beam management scheme proposed for 5G.
Abstract: Millimeter-wave (mmW) spectrum is a major candidate to support the high data rates of 5G systems. However, due to directionality of mmW communication systems, misalignments between the transmit and receive beams occur frequently, making link maintenance particularly challenging and motivating the need for fast and efficient beam tracking. In this paper, we propose a multi-armed bandit framework, called MAMBA, for beam tracking in mmW systems. We develop a reinforcement learning algorithm, called adaptive Thompson sampling (ATS), that MAMBA embodies for the selection of appropriate beams and transmission rates along these beams. ATS uses prior beam-quality information collected through the initial access and updates it whenever an ACK/NACK feedback is obtained from the user. The beam and the rate to be used during next downlink transmission are then selected based on the updated posterior distributions. Due to its model-free nature, ATS can accurately estimate the best beam/rate pair, without making assumptions regarding the temporal channel and/or user mobility. We conduct extensive experiments over the 28 GHz band using a 4x8 phased- array antenna to validate the efficiency of ATS, and show that it improves the link throughput by up to 182%, compared to the beam management scheme proposed for 5G.

48 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...The abundant spectrum available in the mmW bands enables many users to be served by a base station (BS), with significantly higher data rates than what is possible at sub-6 GHz bands [3]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors formulated the wireless relayed backhaul design as a topology-bandwidth-power joint optimization problem, and the influence of path loss, angular spread, array size, and RF power limitation on the user rate has been evaluated.
Abstract: Delivering Gbps high user rate over long distances (around 1 km) is challenging, and the abundant spectrum available in millimeter wave band cannot solve the challenge by its own due to the severe path loss and other limitations. Since it is economically challenging to deploy wired backhaul every few hundred meters, relays (e.g., wireless access points) have been proposed to extend the coverage of a base station which has wired connection to the core network. These relays, deployed every few hundred meters, serve the users in their vicinity and are backhauled to the base station through wireless connections. In this work, the wireless relayed backhaul design has been formulated as a topology-bandwidth-power joint optimization problem, and the influence of path loss, angular spread, array size, and RF power limitation on the user rate has been evaluated. It has been shown that for a linear network deployed along the street at 28 GHz, when high joint directional gain (50 dBi) is available, 1 Gbps user rate within cell range of 1 km can be delivered using 1.5 GHz of bandwidth (using single polarization antennas). The user rates drop precipitously when joint directional gain is reduced, or when the path loss is much more severe. When the number of RF chains is limited, the benefit of larger arrays will eventually be surpassed by the increased channel estimation penalty as the effective beamforming gain saturates owing to the channel angular spread.

48 citations

Proceedings ArticleDOI
16 Apr 2018
TL;DR: This paper proposes CLAM, a distributed mmWave SLAM algorithm that works with no initial information about the network deployment or the environment, and achieves low computational complexity thanks to a fundamental reformulation of the angle-differences-of-arrival mm Wave anchor location estimation problem.
Abstract: Millimeter wave (mmWave) communications are an essential component of 5G-and-beyond ultra-dense Gbit/s wireless networks, but also pose significant challenges related to the communication environment Especially beam-training and tracking, device association, and fast handovers for highly directional mmWave links may potentially incur a high overhead At the same time, such mechanisms would benefit greatly from accurate knowledge about the environment and device locations that can be provided through simultaneous localization and mapping (SLAM) algorithms In this paper we tackle the above issues by proposing CLAM, a distributed mmWave SLAM algorithm that works with no initial information about the network deployment or the environment, and achieves low computational complexity thanks to a fundamental reformulation of the angle-differences-of-arrival mm Wave anchor location estimation problem All information required by CLAM is collected by a mmWave device thanks to beam training and tracking mechanisms inherent to mm Wave networks, at no additional overhead Our results show that CLAM achieves submeter accuracy in the great majority of cases These results are validated via an extensive experimental measurement campaign carried out with 60-GHz mmWave hardware

48 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...Millimeter wave (mmWave) communications in the 30– 300 GHz band are considered key ingredients to achieve multiple Gbit/s link rates in 5G-and-beyond networks [1] as well as WLANs [2]....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]