scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

05 Feb 2014-Vol. 102, Iss: 3, pp 366-385
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the design of an optimal interactive beam alignment and data communication protocol, with the goal of minimizing power consumption under a minimum rate constraint, based on the sectored antenna model and uniform prior on the angles of departure and arrival (AoD/AoA).
Abstract: Millimeter-wave will be a key technology in next-generation wireless networks thanks to abundant bandwidth availability. However, the use of large antenna arrays with beamforming demands precise beam alignment between the transmitter and the receiver and may entail huge overhead in mobile environments. This paper investigates the design of an optimal interactive beam alignment and data communication protocol, with the goal of minimizing power consumption under a minimum rate constraint. The base station selects beam alignment or data communication and the beam parameters, based on the feedback from the user end. Based on the sectored antenna model and uniform prior on the angles of departure and arrival (AoD/AoA), the optimality of a fixed-length beam-alignment phase followed by a data-communication phase is demonstrated. Moreover, a decoupled fractional beam-alignment method is shown to be optimal, which decouples the alignment of AoD and AoA over time, and iteratively scans a fraction of their region of uncertainty. A heuristic policy is proposed for non-uniform prior on AoD/AoA, with provable performance guarantees, and it is shown that the uniform prior is the worst-case scenario. The performance degradation due to detection errors is studied analytically and via simulation. The numerical results with analog beams depict up to 4dB, 7.5dB, and 14dB gains over a state-of-the-art bisection method and conventional and interactive exhaustive search policies, respectively, and demonstrate that the sectored model provides valuable insights for beam-alignment design.

47 citations

Proceedings ArticleDOI
16 Apr 2018
TL;DR: An algorithm called Modified Thompson sampling (MTS) is proposed, whose computational and storage complexity is simply linear in the number of channel states and which achieves at most logarithmic regret as a function of time when compared to an optimal algorithm which knows the probability distribution of the channel states.
Abstract: We consider the problem of transmitting at the optimal rate over a rapidly-varying wireless channel with unknown statistics when the feedback about channel quality is very limited. One motivation for this problem is that, in emerging wireless networks, the use of mm Wave bands means that the channel quality can fluctuate rapidly and thus, one cannot rely on full channel-state feedback to make transmission rate decisions. Inspired by related problems in the context of multi-armed bandits, we consider a well-known algorithm called Thompson sampling to address this problem. However, unlike the traditional multi-armed bandit problem, a direct application of Thompson sampling results in a computational and storage complexity that grows exponentially with time. Therefore, we propose an algorithm called Modified Thompson sampling (MTS), whose computational and storage complexity is simply linear in the number of channel states and which achieves at most logarithmic regret as a function of time when compared to an optimal algorithm which knows the probability distribution of the channel states.

47 citations

Journal ArticleDOI
TL;DR: In this paper, the channel characteristics and cell coverage of the 28 GHz millimeter wave (mmWave) band outdoors are investigated by developing an efficient 3-D ray-tracing simulation.
Abstract: In this paper, the channel characteristics and cell coverage of the 28 GHz millimeter wave (mmWave) band outdoors are investigated by developing an efficient 3-D ray-tracing simulation. First, the accuracy of the simulation is verified by comparing its results with actual measurements. The path loss (PL) agrees well in both line-of-sight (LOS) and non-LOS (NLOS) regions, whereas the shadowing factor exhibits differences in the NLOS regions. Additional simulations are conducted for downtown Gangnam, a representative high-rise urban area in Seoul, South Korea. The simulated and measured coverages of 300 base stations operating in 900 MHz long-term evolution band are compared and analyzed. For the LOS regions, PL of 28 GHz is 30 dB higher because of the free-space PL gaps, whereas PL varied in the NLOS regions because of multipath fading. In addition, the outage probability is determined to evaluate the validity of mmWave cell deployment and coverage for high-rise urban microcell environments. The contributions of this paper include LOS and outage probability models with low root-mean-square errors, indicating improvement over previously developed models.

47 citations

Journal ArticleDOI
TL;DR: The results of a series of experiments performed to examine the impact of terminal handling and movement upon the user equipment (UE) to evolved NodeB (eNB) communications channel at 60 GHz show that the mode of UE operation will be important for future 60 GHz cellular applications.
Abstract: In this letter, we report the results of a series of experiments which were performed to examine the impact of terminal handling and movement upon the user equipment (UE) to evolved NodeB (eNB) communications channel at 60 GHz. Three key utilization scenarios, in which a user imitated making a voice call, sending a text message or simply carrying the device in a pocket, are investigated. Each of these three user cases were studied under line of sight (LOS) and non-LOS (NLOS) channel conditions when the user was mobile in a range of different indoor and outdoor small cell scenarios. It is shown that the mode of UE operation (i.e., how the device is handled) will be important for future 60 GHz cellular applications. In particular, for short-range UE to eNB links which are in true NLOS, body shadowing is the dominating factor. To allow our results to be readily incorporated into network simulations, we have characterized the channel by decomposing the received signal into its constituent path loss, shadowed and small-scale fading components. In particular, we have had good success modeling the shadowed fading using the gamma distribution, whereas the small-scale fading observed in the LOS and NLOS channels has been appropriately modeled using the Rice and Nakagami- $m$ distributions, respectively.

47 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...These include the impact of shadowing on the communications link caused by people and objects in the local environment [2]–[5] but also more critical factors such as how the UE is carried or operated by the user....

    [...]

Journal ArticleDOI
TL;DR: This paper develops a general performance analysis framework for downlink NOMA transmission in mm-wave networks with spatially random users taking into account link blockages and directional beamforming, and proposes an angle-based user pairing strategy.
Abstract: Non-orthogonal multiple access (NOMA) and millimeter wave (mm-wave) are two key enabling technologies for fifth generation (5G) wireless networks. In this paper, we develop a general performance analysis framework for downlink NOMA transmission in mm-wave networks with spatially random users taking into account link blockages and directional beamforming. To facilitate NOMA transmission in mm-wave networks, we propose an angle-based user pairing strategy, where the base station first randomly selects one user and then pairs it with the line-of-sight user that has the minimum relative angle difference. The proposed strategy increases the probability that both NOMA users are covered by the main lobe created by directional beamforming. To account for the randomness of link blockages and user locations, we consider dynamic user ordering among the paired NOMA users. Tools from stochastic geometry are utilized to derive the coverage probability, outage sum rate, and ergodic sum rate of the proposed NOMA scheme, where beam misalignment at both the base station and users is taken into account. Simulations validate the performance analysis and show that the proposed NOMA scheme achieves a larger coverage probability and higher outage and ergodic sum rates than conventional NOMA with distance-based user pairing and orthogonal multiple access.

47 citations


Cites background from "Millimeter-Wave Cellular Wireless N..."

  • ...Furthermore, since the channel coherence time is inversely proportional to the carrier frequency, for a given mobile velocity, mm-wave channels change faster than sub-6 GHz channels [14]....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Also, the human body and many outdoor materials being very reflective, allow them to be important scatterers for mmW propagation [28], [30]....

    [...]

  • ...However, these measurements were performed in an outdoor campus setting with much lower building density and greater opportunities for LOS connectivity than would be found in a typical urban deployment....

    [...]

  • ...Despite the potential of mmW cellular systems, there are a number of key challenges to realizing the vision of cellular networks in these bands: • Range and directional communication: Friis’ transmis- sion law [54] states that the free space omnidirectional path loss grows with the square of the…...

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Millimeter-Wave Cellular Wireless N..." refers background or methods in this paper

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...These multiple antenna systems can be used to form very high gain, electrically steerable arrays, fabricated at the base station (BS), in the skin of a cellphone, or even within a chip [6], [10]–[17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations


"Millimeter-Wave Cellular Wireless N..." refers background in this paper

  • ...Heterogeneous networks, or HetNets, have been one of the most active research areas in cellular standards bodies in the last five years [45], [48], [67], [68], with the main focus being intercell interference coordination and load balancing....

    [...]