scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!

TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Citations
More filters
Journal ArticleDOI
TL;DR: This paper investigates the downlink performance of a three-tier heterogeneous network that consists of sub-6 GHz macrocells overlaid with small cells operating on both the mmWave and sub- 6 GHz bands and develops a model using tools from stochastic geometry to analyze the coverage, rate, area spectral efficiency, and EE of such a network.
Abstract: The increasing adoption of the Internet of Things has led to the need for systems with higher spectral and energy efficiency (EE) in order to enable communication. Larger data rate demands had led researchers to look at millimeter wave (mmWave) bands to boost network rates. This paper investigates the downlink performance of a three-tier heterogeneous network that consists of sub-6 GHz macrocells overlaid with small cells operating on both the mmWave and sub-6 GHz bands. A model is developed using tools from stochastic geometry to analyze the coverage, rate, area spectral efficiency, and EE of such a network. Various deployment strategies and their impacts on the considered metrics are studied. Simulation results are used to verify the validity of the proposed model.

72 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...Experimental measurements using directional antennas [1], show that blockages cause substantial differences in the line-of-sight (LoS) and non LoS (NLoS) pathloss characteristics [6]....

    [...]

  • ...The deployment of mmWave base stations (BSs) operating at 10–300 GHz frequency bands [1] with available bandwidths of 2 GHz or more is considered a key enabler to achieve higher spectral and energy efficiency (EE) in fifth generation (5G) networks [2]–[5]....

    [...]

Journal ArticleDOI
TL;DR: A novel neural network structure for jointly optimizing the transmitter and receiver in communication physical layer under fading channels is proposed with a convolutional autoencoder to simultaneously conduct the role of modulation, equalization, and demodulation.
Abstract: Deep learning has a wide application in the area of natural language processing and image processing due to its strong ability of generalization. In this paper, we propose a novel neural network structure for jointly optimizing the transmitter and receiver in communication physical layer under fading channels. We build up a convolutional autoencoder to simultaneously conduct the role of modulation, equalization, and demodulation. The proposed system is able to design different mapping scheme from input bit sequences of arbitrary length to constellation symbols according to different channel environments. The simulation results show that the performance of neural network-based system is superior to traditional modulation and equalization methods in terms of time complexity and bit error rate under fading channels. The proposed system can also be combined with other coding techniques to further improve the performance. Furthermore, the proposed system network is more robust to channel variation than traditional communication methods.

71 citations


Cites methods from "Millimeter Wave Mobile Communicatio..."

  • ...In order to further improve the transmission and network performance, the fifth generation communication system (5G) will apply many new techniques, such as massive MIMO [4], mmWave [5], and ultra-dense wireless network [6]....

    [...]

Journal ArticleDOI
21 Sep 2016-PLOS ONE
TL;DR: This paper develops a new path-loss model to account for the frequency attenuation with distance, which is term the Frequency attenuation (FA) path- loss model and introduce a frequency-dependent attenuation factor.
Abstract: This paper presents an experimental characterization of millimeter-wave (mm-wave) channels in the 6.5 GHz, 10.5 GHz, 15 GHz, 19 GHz, 28 GHz and 38 GHz frequency bands in an indoor corridor environment. More than 4,000 power delay profiles were measured across the bands using an omnidirectional transmitter antenna and a highly directional horn receiver antenna for both co- and cross-polarized antenna configurations. This paper develops a new path-loss model to account for the frequency attenuation with distance, which we term the frequency attenuation (FA) path-loss model and introduce a frequency-dependent attenuation factor. The large-scale path loss was characterized based on both new and well-known path-loss models. A general and less complex method is also proposed to estimate the cross-polarization discrimination (XPD) factor of close-in reference distance with the XPD (CIX) and ABG with the XPD (ABGX) path-loss models to avoid the computational complexity of minimum mean square error (MMSE) approach. Moreover, small-scale parameters such as root mean square (RMS) delay spread, mean excess (MN-EX) delay, dispersion factors and maximum excess (MAX-EX) delay parameters were used to characterize the multipath channel dispersion. Multiple statistical distributions for RMS delay spread were also investigated. The results show that our proposed models are simpler and more physically-based than other well-known models. The path-loss exponents for all studied models are smaller than that of the free-space model by values in the range of 0.1 to 1.4 for all measured frequencies. The RMS delay spread values varied between 0.2 ns and 13.8 ns, and the dispersion factor values were less than 1 for all measured frequencies. The exponential and Weibull probability distribution models best fit the RMS delay spread empirical distribution for all of the measured frequencies in all scenarios.

71 citations

Journal ArticleDOI
TL;DR: In this paper, a quadrature fractional-N cascaded frequency synthesizer and its phase noise analysis, optimization, and design for future 5G wireless transceivers are theoretically presented and verified with measured results.
Abstract: This paper introduces a quadrature fractional-N cascaded frequency synthesizer and its phase noise analysis, optimization, and design for future 5G wireless transceivers. The performance improvement of the cascaded phase-locked loop (PLL) over single-stage PLL in terms of jitter and power consumption is theoretically presented and verified with measured results. The cascaded PLL is implemented using a first-stage fractional-N charge-pump PLL followed by a second-stage quadrature dividerless subsampling PLL. The fractional division in the first-stage PLL is implemented using a high-resolution phase mixer for lower quantization noise. Two prototypes of the single-stage PLL and the cascaded PLL were implemented in the 65-nm bulk CMOS process. The 26–32 GHz quadrature cascaded PLL consumes a total of 26.9 mW from 1-V supply and achieves less than 100-fs integrated jitter with −116.2 and −112.6-dBc/Hz phase noise at 1-MHz offset for the integer-N and the fractional-N modes, respectively. The fractional-N single-stage and cascaded PLLs achieve figure-of-merits of −230.58 and −248.75 dB, respectively.

71 citations

Proceedings ArticleDOI
08 Jun 2015
TL;DR: A channel model is developed that reveals coupling between the spatial and temporal dimensions that is not captured by conventional separable models and leads to new B-SIMO transceivers that use on the order of Δch beams to deliver near-optimal performance with dramatically low complexity compared to the optimal receiver.
Abstract: Wideband high-dimensional antenna arrays are expected to play a key role in future 5G wireless systems. Due to narrow beamwidths, phased array/beamforming methods are the natural choice for design and analysis of high-dimensional MIMO systems. However, conventional methods are based on the narrowband assumption which is violated as the bandwidth and array dimension increase. In this paper we revisit the use of high-dimensional arrays in line-of-sight single-input multiple-output (SIMO) systems. We develop a channel model that reveals coupling between the spatial and temporal dimensions that is not captured by conventional separable models. We then apply beamspace MIMO (B-MIMO) theory - system representation with respect to orthogonal spatial beams - to analyze system performance. Our analysis reveals a key dispersion factor Δ ch that captures the impact of array dimension and bandwidth on performance. We show that Δ ch characterizes the magnitude of the coupled signal dispersion in spatial angle and time. This leads to new B-SIMO transceivers that use on the order of Δ ch beams to deliver near-optimal performance with dramatically low complexity compared to the optimal receiver. We present results that demonstrate the significant losses incurred by phased array receivers, and the near-optimal performance of low-complexity B-SIMO transceivers. Extension of the new wideband LoS SIMO model to MISO, MIMO, and multipath scenarios is outlined.

71 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...The large number of MIMO degrees of freedom can be exploited for a number of critical capabilities, including [1]–[4]: higher antenna/beamforming gain; higher spatial multiplexing gain; and highly directional communication with narrow beams....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...Mm-wave frequencies, due to the much smaller wavelength, may exploit polarization and new spatial processing techniques, such as massive MIMO and adaptive beamforming [24]....

    [...]

  • ...Small cells offload traffic from base stations by overlaying a layer of small cell access points, which actually decreases the average distance between transmitters and users, resulting in lower propagation losses and higher data rates and energy efficiency [24]....

    [...]

  • ...Massive MIMO base stations allocate antenna arrays at existing macro base stations, which can accurately concentrate transmitted energy to the mobile users [24]....

    [...]

Journal ArticleDOI
TL;DR: Very large MIMO as mentioned in this paper is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation.
Abstract: This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.

2,717 citations

Journal ArticleDOI
Zhouyue Pi1, Farooq Khan1
TL;DR: This article introduces a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system and demonstrates the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment.
Abstract: Almost all mobile communication systems today use spectrum in the range of 300 MHz-3 GHz. In this article, we reason why the wireless community should start looking at the 3-300 GHz spectrum for mobile broadband applications. We discuss propagation and device technology challenges associated with this band as well as its unique advantages for mobile communication. We introduce a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system. We demonstrate the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment. A few key concepts in MMB network architecture such as the MMB base station grid, MMB interBS backhaul link, and a hybrid MMB + 4G system are described. We also discuss beamforming techniques and the frame structure of the MMB air interface.

2,487 citations


"Millimeter Wave Mobile Communicatio..." refers background in this paper

  • ...INTRODUCTION The rapid increase of mobile data growth and the use of smartphones are creating unprecedented challenges for wireless service providers to overcome a global bandwidth shortage [1], [2]....

    [...]

  • ...6 GHz radio spectrum bands for wireless communications [2]....

    [...]

  • ...With an evolution from fixed broadband to mobile broadband, more converged, personalized, convenient and seamless secure services will be achieved, and Samsung has recently made contributions in the area of mm-wave wireless [2], [12]....

    [...]

01 Jan 2012
TL;DR: This leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC.
Abstract: For cellular radio engineers and technicians. The leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications. This book also contains up-to-date information on the major wireless communications standards from around the world. Covers every fundamental aspect of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC. Theodore Rappaport is Series Editor for the Prentice Hall Communication, Engineering, and Emerging Technologies Series.

1,813 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...In order to achieve increased measurement dynamic range for increased coverage distance, we used a sliding correlator spread spectrum system [5]....

    [...]

  • ...Current 2G, 3G, 4G, & LTE-A spectrum and bandwidth allocations [5]....

    [...]