scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!

TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Citations
More filters
Posted Content
16 Oct 2018
TL;DR: The results corroborate the merits of LIS incorporation using both the proposed design algorithms, and as it is shown that LIS-assisted communication can provide up to 300% higher energy efficiency than the conventional relay-assisted one.
Abstract: The adoption of a Reconfigurable Intelligent Surface (RIS) for downlink multi-user communication from a multi-antenna base station is investigated in this paper. We develop energy-efficient designs for both the transmit power allocation and the phase shifts of the surface reflecting elements, subject to individual link budget guarantees for the mobile users. This leads to non-convex design optimization problems for which to tackle we propose two computationally affordable approaches, capitalizing on alternating maximization, gradient descent search, and sequential fractional programming. Specifically, one algorithm employs gradient descent for obtaining the RIS phase coefficients, and fractional programming for optimal transmit power allocation. Instead, the second algorithm employs sequential fractional programming for the optimization of the RIS phase shifts. In addition, a realistic power consumption model for RIS-based systems is presented, and the performance of the proposed methods is analyzed in a realistic outdoor environment. In particular, our results show that the proposed RIS-based resource allocation methods are able to provide up to $300\%$ higher energy efficiency, in comparison with the use of regular multi-antenna amplify-and-forward relaying.

70 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...These networks are anticipated to connect over 50 billions of wireless capability devices by 2020 [4] via dense deployments of multi-antenna base stations and access points [5]–[7]....

    [...]

Posted Content
TL;DR: In this paper, the authors summarized wireless communication research and activities above 100 GHz, overviews the results of previously published propagation measurements at D-band (110-170 GHz), provides the design of a 140 GHz wideband channel sounder system, and proposes indoor wideband propagation measurements and penetration measurements for common materials at 140 GHz which were not previously investigated.
Abstract: With the relatively recent realization that millimeter wave frequencies are viable for mobile communications, extensive measurements and research have been conducted on frequencies from 0.5 to 100 GHz, and several global wireless standard bodies have proposed channel models for frequencies below 100 GHz. Presently, little is known about the radio channel above 100 GHz where there are much wider unused bandwidth slots available. This paper summarizes wireless communication research and activities above 100 GHz, overviews the results of previously published propagation measurements at D-band (110-170 GHz), provides the design of a 140 GHz wideband channel sounder system, and proposes indoor wideband propagation measurements and penetration measurements for common materials at 140 GHz which were not previously investigated.

70 citations

Journal ArticleDOI
TL;DR: A 2-D geometrical propagation model for short-range device-to-device desktop communication channels at sub-terahertz (sub-THz) frequencies and a sum-of-sinusoids-based simulation model that is a good approximation of the reference model are proposed.
Abstract: A 2-D geometrical propagation model for short-range device-to-device desktop communication channels at sub-terahertz (sub-THz) frequencies is proposed. Based on the geometrical model, a parametric reference model for short-range sub-THz multipath fading channels is developed. From the reference model, the corresponding frequency correlation function and the power delay profile (PDP) are derived and compared with the measured data. The results show good agreement between the measured and theoretical PDPs. Finally, a new sum-of-sinusoids-based simulation model for wideband sub-THz channels is proposed. The statistics of the reference model are verified by simulation. The results show that the simulation model is a good approximation of the reference model.

70 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed novel hybrid beamforming schemes for the terahertz (THz) wireless system where a multi-antenna base station (BS) communicates with a multiantenna user over frequency selective fading.
Abstract: We propose novel hybrid beamforming schemes for the terahertz (THz) wireless system where a multi-antenna base station (BS) communicates with a multi-antenna user over frequency selective fading. Here, we assume that the BS employs sub-connected hybrid beamforming and multi-carrier modulation to deliver ultra high data rate. We consider a three-dimensional wideband THz channel by incorporating the joint effect of molecular absorption, high sparsity, and multi-path fading, and consider the carrier frequency offset in multi-carrier systems. With this model, we first propose a two-stage wideband hybrid beamforming scheme which includes a beamsteering codebook searching algorithm for analog beamforming and a regularized channel inversion method for digital beamforming. We then propose a novel wideband hybrid beamforming scheme with two digital beamformers. In this scheme, an additional digital beamformer is developed to compensate for the performance loss caused by the constant-amplitude hardware constraints and the difference of channel matrices among subcarriers. Furthermore, we consider imperfect channel state information (CSI) and propose a probabilistic robust hybrid beamforming scheme to combat channel estimation errors. Numerical results demonstrate the benefits of our proposed schemes for the sake of practical implementation, especially considering its high spectral efficiency, low complexity, and robustness against imperfect CSI.

70 citations

01 Jan 2015
TL;DR: In this article, the authors investigated the fundamental MAC layer performance metrics, including coverage, fairness, connection robustness, collision probability, per-link throughput, area spectral efficiency, and delay.
Abstract: In current wireless communication systems, demands for extremely high data rates, along with spectrum scarcity at the microwave bands, make the millimeter wave (mmWave) band very appealing to provide these extremely high data rates even for a massive number of wireless devices. MmWave communications exhibit severe attenuation, vulnerability to obstacles (called blockage), and sparse-scattering environments. Moreover, mmWave signals have small wavelengths that allow the incorporation of many antenna elements at the current size of radio chips. This leads to high directivity gains both at the transmitter and at the receiver, directional communications, and, more importantly, possible noise-limited operations as opposed to microwave networks that are mostly interference-limited.These fundamental differences between mmWave networks and legacy communication technologies challenge the classical design constraints, objectives, and available degrees of freedom. The natural consequence is the necessity of revisiting most of the medium access control (MAC) layer design principles for mmWave networks, which have so far received less attention in the literature than physical layer and propagation issues. To address this important research gap, this thesis investigates the fundamental MAC layer performance metrics, including coverage, fairness, connection robustness, collision probability, per-link throughput, area spectral efficiency, and delay. The original analysis proposed in this thesis suggests novel insights as to the solutions for many MAC layer issues such as resource allocation, interference management, random access, mobility management, and synchronization in future mmWave networks.A first thread of the thesis focuses on the fundamental performance analysis and mathematical abstraction of mmWave wireless networks to characterize their differences from conventional wireless networks, i.e., high directivity, line-of-sight communications, and occurrence of deafness (misalignment between transmitters and receivers). A mathematical framework to investigate the impact of beam training (alignment) overhead on the throughput is established, which leads to identify a new alignment-throughput tradeoff in mmWave networks. A novel blockage model that captures the angular correlation of line-of-sight conditions using a new notion of "coherence angle" is proposed. The coverage and delay of directional cell discovery are evaluated, and an optimization approach to maximize long-term throughput of users with fairness guarantees is proposed. In addition, this thesis develops a tractable approach to derive the collision probability, as a function of density of the transmitters, transmission power, density and size of the obstacles, operating beamwidth, and sensitivity of the receiver, among the main parameters. The collision probability allows deriving closed-form expressions for the per-link and network throughput of mmWave networks, and thereby identifying that, contrary to mainstream belief, these networks may exhibit a non-negligible transitional behavior of interference from a noise-limited to an interference-limited regime.The second thread of the thesis builds on the previous fundamental performance analysis and modeling to establish new, efficient MAC protocols. The derived collision probability is used to evaluate per-link throughput, area spectral efficiency, and delay performance of common MAC protocols such as TDMA and slotted ALOHA, and to provide a fundamental comparison between pros and cons of contention-free and contention-based MAC protocols. The results suggest the use of on-demand interference management strategy for future mmWave cellular networks and collision-aware hybrid MAC protocols for mmWave ad hoc networks to reliably deliver messages without sacrificing throughput and delay performance. Moreover, the transitional behavior, together with significant mismatch between transmission rates of control and data messages, imposes the development of new hybrid proactive and reactive control plane architecture. This thesis identifies the prolonged backoff time problem, which happens in mmWave networks due to blockage and deafness, and proposes a new collision notification signal to solve this problem. Motivated by the significant mismatch between coverage of the control and data planes along with delay analysis of directional cell search, a novel two-step synchronization procedure is proposed for mmWave cellular networks. Also, the impact of relaying and multi-hop communication to provide reliable mmWave connections, to alleviate frequent handovers, and to reduce the beam training overhead is investigated.The investigations of this thesis aim to demystify MAC layer performance of mmWave networks and to show the availability of many new degrees of freedom to improve the network performance, e.g., in terms of area spectral efficiency, energy efficiency, robustness, delay, coverage, and uniform quality of service provisioning. The results reveal many special behaviors of mmWave networks that are largely ignored in design approach of the current mmWave networks. Given that the standardization of mmWave wireless cellular networks has not started as yet, and that existing standards of mmWave ad hoc networks are highly sub-optimal, the results of this thesis will provide fundamental design guidelines that have the potential to be very useful for future mmWave standardizations.

70 citations

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...Mm-wave frequencies, due to the much smaller wavelength, may exploit polarization and new spatial processing techniques, such as massive MIMO and adaptive beamforming [24]....

    [...]

  • ...Small cells offload traffic from base stations by overlaying a layer of small cell access points, which actually decreases the average distance between transmitters and users, resulting in lower propagation losses and higher data rates and energy efficiency [24]....

    [...]

  • ...Massive MIMO base stations allocate antenna arrays at existing macro base stations, which can accurately concentrate transmitted energy to the mobile users [24]....

    [...]

Journal ArticleDOI
TL;DR: Very large MIMO as mentioned in this paper is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation.
Abstract: This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.

2,717 citations

Journal ArticleDOI
Zhouyue Pi1, Farooq Khan1
TL;DR: This article introduces a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system and demonstrates the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment.
Abstract: Almost all mobile communication systems today use spectrum in the range of 300 MHz-3 GHz. In this article, we reason why the wireless community should start looking at the 3-300 GHz spectrum for mobile broadband applications. We discuss propagation and device technology challenges associated with this band as well as its unique advantages for mobile communication. We introduce a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system. We demonstrate the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment. A few key concepts in MMB network architecture such as the MMB base station grid, MMB interBS backhaul link, and a hybrid MMB + 4G system are described. We also discuss beamforming techniques and the frame structure of the MMB air interface.

2,487 citations


"Millimeter Wave Mobile Communicatio..." refers background in this paper

  • ...INTRODUCTION The rapid increase of mobile data growth and the use of smartphones are creating unprecedented challenges for wireless service providers to overcome a global bandwidth shortage [1], [2]....

    [...]

  • ...6 GHz radio spectrum bands for wireless communications [2]....

    [...]

  • ...With an evolution from fixed broadband to mobile broadband, more converged, personalized, convenient and seamless secure services will be achieved, and Samsung has recently made contributions in the area of mm-wave wireless [2], [12]....

    [...]

01 Jan 2012
TL;DR: This leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC.
Abstract: For cellular radio engineers and technicians. The leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications. This book also contains up-to-date information on the major wireless communications standards from around the world. Covers every fundamental aspect of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC. Theodore Rappaport is Series Editor for the Prentice Hall Communication, Engineering, and Emerging Technologies Series.

1,813 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...In order to achieve increased measurement dynamic range for increased coverage distance, we used a sliding correlator spread spectrum system [5]....

    [...]

  • ...Current 2G, 3G, 4G, & LTE-A spectrum and bandwidth allocations [5]....

    [...]