scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!

TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Citations
More filters
Journal ArticleDOI
05 Sep 2018
TL;DR: In this article, the limits of high-performance metallic rectangular waveguides are clearly identified and a new implementation with dielectric waveguide is presented and compared to classic approaches.
Abstract: Tunable Liquid Crystal (LC)-based microwave components are of increasing interest in academia and industry. Based on these components, numerous applications can be targeted such as tunable microwave filters and beam-steering antenna systems. With the commercialization of first LC-steered antennas for Ku-band e.g., by Kymeta and Alcan Systems, LC-based microwave components left early research stages behind. With the introduction of terrestrial 5G communications systems, moving to millimeter-wave communication, these systems can benefit from the unique properties of LC in terms of material quality. In this paper, we show recent developments in millimeter wave phase shifters for antenna arrays. The limits of classical high-performance metallic rectangular waveguides are clearly identified. A new implementation with dielectric waveguides is presented and compared to classic approaches.

61 citations

Journal ArticleDOI
TL;DR: In this article, a convex optimization problem is proposed to minimize the Cramer-Rao bound of the AoD/AoA under a given uncertainty range, assuming a fully digital architecture at the transmitter and spatial filtering of a single path.
Abstract: In millimeter-wave channels, most of the received energy is carried by a few paths. Traditional precoders sweep the angle-of-departure (AoD) and angle-of-arrival (AoA) space with directional precoders to identify directions with largest power. Such precoders are heuristic and lead to suboptimal AoD/AoA estimation. We derive optimal precoders, minimizing the Cramer–Rao bound (CRB) of the AoD/AoA under a given uncertainty range, assuming a fully digital architecture at the transmitter and spatial filtering of a single path. The precoders are found by solving a suitable convex optimization problem. We demonstrate that the accuracy can be improved by at least a factor of two over traditional precoders, and show that there is an optimal number of distinct precoders beyond which the CRB does not improve.

61 citations

Journal ArticleDOI
TL;DR: Numerical results show that the proposed training beam sequence design algorithms yield good performance and a very fast suboptimal greedy algorithm is developed based on a newly proposed reduced sufficient statistic to make the computational complexity of the proposed algorithm low to a level for practical implementation.
Abstract: In this paper, adaptive training beam sequence design for efficient channel estimation in large millimeter-wave (mmWave) multiple-input multiple-output (MIMO) channels is considered. By exploiting the sparsity in large mmWave MIMO channels and imposing a Markovian random walk assumption on the movement of the receiver and reflection clusters, the adaptive training beam sequence design and channel estimation problem is formulated as a partially observable Markov decision process (POMDP) problem that finds non-zero bins in a two-dimensional grid. Under the proposed POMDP framework, optimal and suboptimal adaptive training beam sequence design policies are derived. Furthermore, a very fast suboptimal greedy algorithm is developed based on a newly proposed reduced sufficient statistic to make the computational complexity of the proposed algorithm low to a level for practical implementation. Numerical results are provided to evaluate the performance of the proposed training beam design method. Numerical results show that the proposed training beam sequence design algorithms yield good performance.

61 citations

Journal ArticleDOI
TL;DR: This paper shows that wireless THz receivers can also greatly benefit from optoelectronic signal processing techniques, in particular when carrier frequencies beyond 0.1 THz and wideband tunability over more than an octave is required.
Abstract: Photonics might play a key role in future wireless communication systems that operate at THz carrier frequencies. A prime example is the generation of THz data streams by mixing optical signals in high-speed photodetectors. Over the previous years, this concept has enabled a series of wireless transmission experiments at record-high data rates. Reception of THz signals in these experiments, however, still relied on electronic circuits. In this paper, we show that wireless THz receivers can also greatly benefit from optoelectronic signal processing techniques, in particular when carrier frequencies beyond 0.1 THz and wideband tunability over more than an octave is required. Our approach relies on a high-speed photoconductor and a photonic local oscillator for optoelectronic down-conversion of THz data signals to an intermediate frequency band that is easily accessible by conventional microelectronics. By tuning the frequency of the photonic local oscillator, we can cover a wide range of carrier frequencies between 0.03 THz and 0.34 THz. We demonstrate line rates of up to 10 Gbit/s on a single channel and up to 30 Gbit/s on multiple channels over a distance of 58 m. To the best of our knowledge, our experiments represent the first demonstration of a THz transmission link that exploits optoelectronic signal processing techniques both at the transmitter and the receiver.

61 citations

Journal ArticleDOI
TL;DR: An adaptive VR framework that enables high-quality wireless VR in future mmWave-enabled wireless networks with mobile edge computing (MEC), where real-time VR rendering tasks can be offloaded to MEC servers adaptively and the caching capability of M EC servers enables further performance improvement.
Abstract: Wireless virtual reality (VR) is predicted to become a killer application in 5G and beyond, which provides an immersive experience and revolutionizes the way people communicate. It is well-known that rendering is the key performance bottleneck in wireless VR systems, especially for VR games. However, real-time rendering and data correlation are ignored by most researchers. In this paper, we propose an adaptive VR framework that enables high-quality wireless VR in future mmWave-enabled wireless networks with mobile edge computing (MEC), where real-time VR rendering tasks can be offloaded to MEC servers adaptively and the caching capability of MEC servers enables further performance improvement. First, we formulate the addressed problem to maximize the quality of experience (QoE) of the users, where association, adaptive offloading mode selection, and caching policy are jointly optimized. Considering the high complexity of the addressed problem, we then propose a distributed learning approach consisting of an offline training phase and an online running phase, which maintains scalability and adaptation capability. The offline phase is based on deep reinforcement learning (DRL) while the latter utilizes game theory. At last, simulation results show the superiority of the proposed algorithm over the other baseline algorithms in terms of QoE utility values, latency, and convergence time.

61 citations


Cites methods from "Millimeter Wave Mobile Communicatio..."

  • ...For the downlink transmission over mmWave channels, directional beamforming is adopted and small-scale fading is neglected, which has little changes in received power [34]....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...Mm-wave frequencies, due to the much smaller wavelength, may exploit polarization and new spatial processing techniques, such as massive MIMO and adaptive beamforming [24]....

    [...]

  • ...Small cells offload traffic from base stations by overlaying a layer of small cell access points, which actually decreases the average distance between transmitters and users, resulting in lower propagation losses and higher data rates and energy efficiency [24]....

    [...]

  • ...Massive MIMO base stations allocate antenna arrays at existing macro base stations, which can accurately concentrate transmitted energy to the mobile users [24]....

    [...]

Journal ArticleDOI
TL;DR: Very large MIMO as mentioned in this paper is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation.
Abstract: This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.

2,717 citations

Journal ArticleDOI
Zhouyue Pi1, Farooq Khan1
TL;DR: This article introduces a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system and demonstrates the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment.
Abstract: Almost all mobile communication systems today use spectrum in the range of 300 MHz-3 GHz. In this article, we reason why the wireless community should start looking at the 3-300 GHz spectrum for mobile broadband applications. We discuss propagation and device technology challenges associated with this band as well as its unique advantages for mobile communication. We introduce a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system. We demonstrate the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment. A few key concepts in MMB network architecture such as the MMB base station grid, MMB interBS backhaul link, and a hybrid MMB + 4G system are described. We also discuss beamforming techniques and the frame structure of the MMB air interface.

2,487 citations


"Millimeter Wave Mobile Communicatio..." refers background in this paper

  • ...INTRODUCTION The rapid increase of mobile data growth and the use of smartphones are creating unprecedented challenges for wireless service providers to overcome a global bandwidth shortage [1], [2]....

    [...]

  • ...6 GHz radio spectrum bands for wireless communications [2]....

    [...]

  • ...With an evolution from fixed broadband to mobile broadband, more converged, personalized, convenient and seamless secure services will be achieved, and Samsung has recently made contributions in the area of mm-wave wireless [2], [12]....

    [...]

01 Jan 2012
TL;DR: This leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC.
Abstract: For cellular radio engineers and technicians. The leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications. This book also contains up-to-date information on the major wireless communications standards from around the world. Covers every fundamental aspect of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC. Theodore Rappaport is Series Editor for the Prentice Hall Communication, Engineering, and Emerging Technologies Series.

1,813 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...In order to achieve increased measurement dynamic range for increased coverage distance, we used a sliding correlator spread spectrum system [5]....

    [...]

  • ...Current 2G, 3G, 4G, & LTE-A spectrum and bandwidth allocations [5]....

    [...]