scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!

TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Citations
More filters
Journal ArticleDOI
TL;DR: This contribution discusses the basics of quantum computing using linear algebra, before presenting the operation of the major quantum algorithms, which have been proposed in the literature for improving wireless communications systems, and investigates a number of optimization problems encountered both in the physical and network layer of wireless communications.
Abstract: Faster, ultra-reliable, low-power, and secure communications has always been high on the wireless evolutionary agenda. However, the appetite for faster, more reliable, greener, and more secure communications continues to grow. The state-of-the-art methods conceived for achieving the performance targets of the associated processes may be accompanied by an increase in computational complexity. Alternatively, a degraded performance may have to be accepted due to the lack of jointly optimized system components. In this survey we investigate the employment of quantum computing for solving problems in wireless communication systems. By exploiting the inherent parallelism of quantum computing, quantum algorithms may be invoked for approaching the optimal performance of classical wireless processes, despite their reduced number of cost-function evaluations. In this contribution we discuss the basics of quantum computing using linear algebra, before presenting the operation of the major quantum algorithms, which have been proposed in the literature for improving wireless communications systems. Furthermore, we investigate a number of optimization problems encountered both in the physical and network layer of wireless communications, while comparing their classical and quantum-assisted solutions. Finally, we state a number of open problems in wireless communications that may benefit from quantum computing.

58 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...tions [151]–[153], pencil beams may be formed in order to minimize the multi-user interference and to increase the data...

    [...]

Proceedings ArticleDOI
18 May 2016
TL;DR: It is shown that a PL model with a physical anchor point can be a better predictor of PL performance in the prediction sets while also providing a parameterization which is more stable over a substantial number of different measurement sets.
Abstract: It is becoming clear that 5G wireless systems will encompass frequencies from around 500 MHz all the way to around 100 GHz. To adequately assess the performance of 5G systems in these different bands, path loss (PL) models will need to be developed across this wide frequency range. The PL mod-els can roughly be broken into two categories, ones that have some anchor in physics, and ones that curve- match only over the data set without any physical anchor. In this paper we use both real-world measurements from 2 to 28 GHz and ray-tracing studies from 2 to 73.5 GHz, both in an urban-macro environ-ment, to assess the prediction performance of the two PL model-ing techniques. In other words, we look at how the two different PL modeling techniques perform when the PL model is applied to a prediction set which is different in distance, frequency, or environment from a measurement set where the parameters of the respective models are determined. We show that a PL model with a physical anchor point can be a better predictor of PL per- formance in the prediction sets while also providing a parameter-ization which is more stable over a substantial number of differ-ent measurement sets.

58 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ..., beyond 6 GHz) for access communications [1]-[4]....

    [...]

Proceedings ArticleDOI
01 Sep 2016
TL;DR: In this paper geometry of the antenna and various parameters such as return loss plot, gain plot, radiation pattern plot and VSWR plot are presented & discussed and they are in good match with simulated results.
Abstract: This paper presents a low profile microstrip patch antenna for next generation 5G devices. The proposed patch antenna has a compact structure of 20mm × 20mm × 1.6mm including the ground plane, which is suitable to be used in handheld devices. The antenna resonates at 10.15 GHz covering 5G frequency band. The proposed design provides a gain of 4.46dBi and the radiation pattern is omni-directional. In this paper geometry of the antenna and various parameters such as return loss plot, gain plot, radiation pattern plot and VSWR plot are presented & discussed. Measured results are also presented and they are in good match with simulated results.

58 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...In advanced small cell technology 5G technology can be introduced with existing 4G macro cells[4]-[6]....

    [...]

  • ...Microstrip Patch Antenna has number of merits such as low profile planar structure, multiband properties using some techniques, low cost and moderate to high gain [4]....

    [...]

Journal ArticleDOI
TL;DR: This paper presents a review of the recent results on secure transmission with discrete signaling for various scenarios including multi-carrier transmission systems, broadcast channels with confidential messages, cognitive multiple access and relay networks, and discusses some open problems and directions for future research.
Abstract: Providing secure communications over the physical layer with the objective of achieving secrecy without requiring a secret key has been receiving growing attention within the past decade. The vast majority of the existing studies in the area of physical layer security focus exclusively on the scenarios where the channel inputs are Gaussian distributed. However, in practice, the signals employed for transmission are drawn from discrete signal constellations such as phase shift keying and quadrature amplitude modulation. Hence, understanding the impact of the finite-alphabet input constraints and designing secure transmission schemes under this assumption is a mandatory step toward a practical implementation of physical layer security. With this motivation, this paper reviews recent developments on physical layer security with finite-alphabet inputs. We explore transmit signal design algorithms for single-antenna as well as multi-antenna wiretap channels under different assumptions on the channel state information at the transmitter. Moreover, we present a review of the recent results on secure transmission with discrete signaling for various scenarios including multi-carrier transmission systems, broadcast channels with confidential messages, cognitive multiple access and relay networks. Throughout the article, we stress the important behavioral differences of discrete versus Gaussian inputs in the context of the physical layer security. We also present an overview of practical code construction over Gaussian and fading wiretap channels, and discuss some open problems and directions for future research.

58 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...massive MIMO [107], millimeter wave (mmWave) communication systems [108], full duplex transmission [115] and non-orthogonal multiple access (NOMA) [116] have attracted...

    [...]

Proceedings ArticleDOI
01 Dec 2013
TL;DR: It is shown that the microstrip grid array antenna covers a footprint of 15×15 mm2, radiates a fixed beam in the boresight direction, and achieves the 10-dB impedance bandwidth of 7.16 GHz from 23.86 to 31.02 GHz and the 3-dB gain bandwidth of 4.79 GHz.
Abstract: Future broadband mobile communication networks such as 5G and beyond will most likely use millimeter-wave frequencies. There is, however, little knowledge about millimeter-wave antenna design for cellular mobile devices. This paper reports a microstrip grid array antenna on an FR4 substrate in a standard PCB technology. It is shown that the microstrip grid array antenna covers a footprint of 15×15 mm2, radiates a fixed beam in the boresight direction, and achieves the 10-dB impedance bandwidth of 7.16 GHz from 23.86 to 31.02 GHz and the 3-dB gain bandwidth of 4.79 GHz from 27.54 to 32.33 GHz with the maximal realized gain of 12.66 dBi at 29.2 GHz.

58 citations

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...Mm-wave frequencies, due to the much smaller wavelength, may exploit polarization and new spatial processing techniques, such as massive MIMO and adaptive beamforming [24]....

    [...]

  • ...Small cells offload traffic from base stations by overlaying a layer of small cell access points, which actually decreases the average distance between transmitters and users, resulting in lower propagation losses and higher data rates and energy efficiency [24]....

    [...]

  • ...Massive MIMO base stations allocate antenna arrays at existing macro base stations, which can accurately concentrate transmitted energy to the mobile users [24]....

    [...]

Journal ArticleDOI
TL;DR: Very large MIMO as mentioned in this paper is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation.
Abstract: This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.

2,717 citations

Journal ArticleDOI
Zhouyue Pi1, Farooq Khan1
TL;DR: This article introduces a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system and demonstrates the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment.
Abstract: Almost all mobile communication systems today use spectrum in the range of 300 MHz-3 GHz. In this article, we reason why the wireless community should start looking at the 3-300 GHz spectrum for mobile broadband applications. We discuss propagation and device technology challenges associated with this band as well as its unique advantages for mobile communication. We introduce a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system. We demonstrate the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment. A few key concepts in MMB network architecture such as the MMB base station grid, MMB interBS backhaul link, and a hybrid MMB + 4G system are described. We also discuss beamforming techniques and the frame structure of the MMB air interface.

2,487 citations


"Millimeter Wave Mobile Communicatio..." refers background in this paper

  • ...INTRODUCTION The rapid increase of mobile data growth and the use of smartphones are creating unprecedented challenges for wireless service providers to overcome a global bandwidth shortage [1], [2]....

    [...]

  • ...6 GHz radio spectrum bands for wireless communications [2]....

    [...]

  • ...With an evolution from fixed broadband to mobile broadband, more converged, personalized, convenient and seamless secure services will be achieved, and Samsung has recently made contributions in the area of mm-wave wireless [2], [12]....

    [...]

01 Jan 2012
TL;DR: This leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC.
Abstract: For cellular radio engineers and technicians. The leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications. This book also contains up-to-date information on the major wireless communications standards from around the world. Covers every fundamental aspect of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC. Theodore Rappaport is Series Editor for the Prentice Hall Communication, Engineering, and Emerging Technologies Series.

1,813 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...In order to achieve increased measurement dynamic range for increased coverage distance, we used a sliding correlator spread spectrum system [5]....

    [...]

  • ...Current 2G, 3G, 4G, & LTE-A spectrum and bandwidth allocations [5]....

    [...]