scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!

TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Citations
More filters
Posted Content
TL;DR: This paper provides a simple albeit accurate statistical procedure for the generation of a clustered MIMO channel model operating at mmWaves, for both the cases of slowly and rapidly time-varying channels.
Abstract: The use of mmWave frequencies is one of the key strategies to achieve the fascinating 1000x increase in the capacity of future 5G wireless systems. While for traditional sub-6 GHz cellular frequencies several well-developed statistical channel models are available for system simulation, similar tools are not available for mmWave frequencies, thus preventing a fair comparison of independently developed transmission and reception schemes. In this paper we provide a simple albeit accurate statistical procedure for the generation of a clustered MIMO channel model operating at mmWaves, for both the cases of slowly and rapidly time-varying channels. Matlab scripts for channel generation are also provided, along with an example of their use.

53 citations

Journal ArticleDOI
TL;DR: This paper presents results on the achievable spectral efficiency and on the energy efficiency for a wireless multiple-input-multiple-output (MIMO) link operating at millimeter wave frequencies (mmWave) in a typical 5G scenario and shows that the best performance is achieved by single-carrier modulation with time-domain equalization.
Abstract: This paper presents results on the achievable spectral efficiency and on the energy efficiency for a wireless multiple-input-multiple-output (MIMO) link operating at millimeter wave frequencies (mmWave) in a typical 5G scenario. Two different single-carrier modem schemes are considered, i.e., a traditional modulation scheme with linear equalization at the receiver, and a single-carrier modulation with cyclic prefix, frequency-domain equalization and fast Fourier transform-based processing at the receiver; these two schemes are compared with a conventional MIMO orthogonal frequency division multiplexing transceiver structure. Our analysis jointly takes into account the peculiar characteristics of MIMO channels at mmWave frequencies, the use of hybrid (analog-digital) pre-coding and post-coding beamformers, the finite cardinality of the modulation structure, and the non-linear behavior of the transmitter power amplifiers. Our results show that the best performance is achieved by single-carrier modulation with time-domain equalization, which exhibits the smallest loss due to the non-linear distortion, and whose performance can be further improved by using advanced equalization schemes. Results also confirm that performance gets severely degraded when the link length exceeds 90–100 m and the transmit power falls below 0 dBW.

53 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...The use of mmWave frequencies for cellular communications has been thus deeply investigated in recent years [2]–[6], and several prototypes and test-beds showing the potentiality of mmWave frequencies for cellular applications are currently already available [7], [8]....

    [...]

Journal ArticleDOI
TL;DR: Investigation of the potential ability of mmWave path loss models, such as floating intercept (FI) and close-in (CI), based on real measurements gathered from urban microcell outdoor environments at 38 GHz showed that the CI path loss model predicted greater network performance for the LOS condition, and also estimated significant outcomes for the NLOS environment.
Abstract: The advent of fifth-generation (5G) systems and their mechanics have introduced an unconventional frequency spectrum of high bandwidth with most falling under the millimeter wave (mmWave) spectrum. The benefit of adopting these bands of the frequency spectrum is two-fold. First, most of these bands appear to be unutilized and they are free, thus suggesting the absence of interference from other technologies. Second, the availability of a larger bandwidth offers higher data rates for all users, as there are higher numbers of users who are connected in a small geographical area, which is also stated as the Internet of Things (IoT). Nevertheless, high-frequency band poses several challenges in terms of coverage area limitations, signal attenuation, path and penetration losses, as well as scattering. Additionally, mmWave signal bands are susceptible to blockage from buildings and other structures, particularly in higher-density urban areas. Identifying the channel performance at a given frequency is indeed necessary to optimize communication efficiency between the transmitter and receiver. Therefore, this paper investigated the potential ability of mmWave path loss models, such as floating intercept (FI) and close-in (CI), based on real measurements gathered from urban microcell outdoor environments at 38 GHz conducted at the Universiti Teknologi Malaysia (UTM), Kuala Lumpur campus. The measurement data were obtained by using a narrow band mmWave channel sounder equipped with a steerable direction horn antenna. It investigated the potential of the network for outdoor scenarios of line-of-sight (LOS) and non-line-of-sight (NLOS) with both schemes of co- (vertical-vertical) and cross (vertical-horizontal) polarization. The parameters were selected to reflect the performance and the variances with other schemes, such as average users cell throughput, throughput of users that are at cell-edges, fairness index, and spectral efficiency. The outcomes were examined for various antenna configurations as well as at different channel bandwidths to prove the enhancement of overall network performance. This work showed that the CI path loss model predicted greater network performance for the LOS condition, and also estimated significant outcomes for the NLOS environment. The outputs proved that the FI path loss model, particularly for V-V antenna polarization, gave system simulation results that were unsuitable for the NLOS scenario.

52 citations

Proceedings ArticleDOI
01 Dec 2014
TL;DR: The 5GETLA reference design is extended and the non-line-of-sight frame design is considered as a good candidate especially for small-distance indoor wireless access or inband backhaul and is particularly optimized in terms of ultra-low latency with frame duration equal to 0.05 ms, achieving the strictest physical layer latency requirements set for 5G communications.
Abstract: The projected growth of mobile data traffic requires the 5G wireless systems to support at least 1000 x larger area throughput than the existing 4G solutions This requires ultra-dense local area networks combined with millimeter-wave communications to provide high spatial multiplexing gain and wide bandwidths for multi-gigabit peak data rates In this paper, we extend our 5GETLA reference design for 5G small cell network radio interface in 3–10 GHz carrier frequencies towards millimeter-wave communications and discuss separate solutions for both line-of-sight and non-line-of-sight scenarios The non-line-of-sight frame design achieves frame duration equal to 01 ms which is one hundredth of the LTE frame duration The line-of-sight design is also considered as a good candidate especially for small-distance indoor wireless access or inband backhaul and is particularly optimized in terms of ultra-low latency with frame duration equal to 005 ms, achieving the strictest physical layer latency requirements set for 5G communications

52 citations


Cites background or methods from "Millimeter Wave Mobile Communicatio..."

  • ...Especially in the 60 GHz band, due to the oxygen absorption [5], the path loss is significant for longer links....

    [...]

  • ...To achieve ultra-dense networks, the mm-wave communications combined with massive beamforming (BF) has been recently proposed [5]....

    [...]

  • ...To motivate the deployment of mm-wave communication systems, in [5] it was shown that achieving good coverage with 200 m cell radius is possible when operating on a 38 GHz carrier frequency....

    [...]

  • ...Also the term ”data shower” has been used together with mm-wave communications [5] to indicate...

    [...]

Journal ArticleDOI
TL;DR: This work proposes a novel beam selection algorithm for downlink mmWave multi-user MIMO systems that selects $K$ beams for users and shows that the proposed method outperforms the existing ones.
Abstract: Millimeter wave (mmWave) frequencies offer huge transmission bandwidths and allow packing a large number of antennas within a given aperture area, enabling high-dimensional MIMO communications. A major bottleneck in realizing such systems is the requirement of a large number of RF chains. Working in the beamspace domain provides an attractive solution through beam selection . We propose a novel beam selection algorithm for downlink mmWave multi-user MIMO systems that selects $K$ beams for $K$ users. The proposed method attempts to maximize the sum-rate and nulls-out the multi-user interference. We show, through simulations, that the proposed method outperforms the existing ones.

52 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...Millimeter wave (mmWave) communications is expected to be an important component in 5G wireless networks to provide multigigabit wireless services [1], [2]....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...Mm-wave frequencies, due to the much smaller wavelength, may exploit polarization and new spatial processing techniques, such as massive MIMO and adaptive beamforming [24]....

    [...]

  • ...Small cells offload traffic from base stations by overlaying a layer of small cell access points, which actually decreases the average distance between transmitters and users, resulting in lower propagation losses and higher data rates and energy efficiency [24]....

    [...]

  • ...Massive MIMO base stations allocate antenna arrays at existing macro base stations, which can accurately concentrate transmitted energy to the mobile users [24]....

    [...]

Journal ArticleDOI
TL;DR: Very large MIMO as mentioned in this paper is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation.
Abstract: This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.

2,717 citations

Journal ArticleDOI
Zhouyue Pi1, Farooq Khan1
TL;DR: This article introduces a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system and demonstrates the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment.
Abstract: Almost all mobile communication systems today use spectrum in the range of 300 MHz-3 GHz. In this article, we reason why the wireless community should start looking at the 3-300 GHz spectrum for mobile broadband applications. We discuss propagation and device technology challenges associated with this band as well as its unique advantages for mobile communication. We introduce a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system. We demonstrate the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment. A few key concepts in MMB network architecture such as the MMB base station grid, MMB interBS backhaul link, and a hybrid MMB + 4G system are described. We also discuss beamforming techniques and the frame structure of the MMB air interface.

2,487 citations


"Millimeter Wave Mobile Communicatio..." refers background in this paper

  • ...INTRODUCTION The rapid increase of mobile data growth and the use of smartphones are creating unprecedented challenges for wireless service providers to overcome a global bandwidth shortage [1], [2]....

    [...]

  • ...6 GHz radio spectrum bands for wireless communications [2]....

    [...]

  • ...With an evolution from fixed broadband to mobile broadband, more converged, personalized, convenient and seamless secure services will be achieved, and Samsung has recently made contributions in the area of mm-wave wireless [2], [12]....

    [...]

01 Jan 2012
TL;DR: This leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC.
Abstract: For cellular radio engineers and technicians. The leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications. This book also contains up-to-date information on the major wireless communications standards from around the world. Covers every fundamental aspect of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC. Theodore Rappaport is Series Editor for the Prentice Hall Communication, Engineering, and Emerging Technologies Series.

1,813 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...In order to achieve increased measurement dynamic range for increased coverage distance, we used a sliding correlator spread spectrum system [5]....

    [...]

  • ...Current 2G, 3G, 4G, & LTE-A spectrum and bandwidth allocations [5]....

    [...]