scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!

TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Citations
More filters
Journal ArticleDOI
TL;DR: The proposed antenna concept significantly improves the total radiated power and power efficiency of a wireless transmitter, particularly useful for 5G transmitters that normally require large output power to compensate the high mm-Wave path loss.
Abstract: A millimeter-wave (mm-Wave) dual-feed square loop antenna is presented in this paper for 5G communications. It synthesizes identical far-field radiation patterns as a conventional single-feed square loop antenna. The dual-feed antenna (DFA) also simplifies or even eliminates the lossy power-combining network between the transmitter and antenna, achieving direct on-antenna power combining. The proposed antenna concept significantly improves the total radiated power and power efficiency of a wireless transmitter, particularly useful for 5G transmitters that normally require large output power to compensate the high mm-Wave path loss. Compared with antenna-array-based spatial power combining, the DFA only requires a single-antenna footprint and maintains the single-element beamwidth, ideal for mobile 5G communications. The dual-feed square loop antenna is designed and characterized at two potential 5G bands, i.e., 38.5 and 73.5 GHz. Conventional single-feed square loop antennas are implemented as reference designs. Closely matched antenna characteristics are achieved in measurement between the proposed DFA and conventional single-feed antenna. The dual-feed square loop antenna has measured broadside gain of 2.9 and 3 dBi, and fractional bandwidth of 13% and 14%, at 38.5 and 73.5 GHz, respectively. High-speed modulation test is also performed. A 4.3% error vector magnitude (EVM) with a −33.2-dBc adjacent channel leakage ratio (ACLR) for 6-Gb/s 64QAM is achieved at 38.5 GHz, and a 5.6% EVM with a −33.4-dBc ACLR for 6-Gb/s 64QAM is measured at 73.5 GHz, which demonstrates the viability of the proposed DFA for high-speed and complex modulations required by 5G communications.

48 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed an atomic-norm-based method for mm-wave FD-MIMO channel estimation under both uniform planar arrays (UPA) and non-uniform planar array (NUPA), which does not require discretizing the angle spaces of the angle of arrival and angle of departure into grids.
Abstract: The millimeter-wave (mmWave) full-dimensional (FD) MIMO system employs planar arrays at both the base station and the user equipment and can simultaneously support both azimuth and elevation beamforming. In this paper, we propose atomic-norm-based methods for mm-wave FD-MIMO channel estimation under both uniform planar arrays (UPA) and non-uniform planar arrays (NUPA). Unlike existing algorithms, such as compressive sensing (CS) or subspace methods, the atomic-norm-based algorithms do not require to discretize the angle spaces of the angle of arrival and angle of departure into grids, thus provide much better accuracy in estimation. In the UPA case, to reduce the computational complexity, the original large-scale atomic norm minimization problem is approximately reformulated as a semi-definite program (SDP) containing two decoupled two-level Toeplitz matrices. The SDP is then solved via the alternating direction method of multipliers where each iteration involves only closed-form computations. In the NUPA case, the atomic-norm-based formulation for channel estimation becomes nonconvex and a gradient-decent-based algorithm is proposed to solve the problem. Simulation results show that the proposed algorithms achieve better performance than the CS-based and subspace-based algorithms.

48 citations

Journal ArticleDOI
TL;DR: The use of analog radio-over-fiber (ARoF) is proposed and demonstrated as a viable alternative which, combined with space division multiplexing in the optical distribution network as well as photonic integration of the required transceivers, shows a path to a scaleable fronthaul solution for 5G.
Abstract: The introduction of millimeter wave (mm-wave) frequency bands for cellular communications with significantly larger bandwidths compared to their sub-6 GHz counterparts, the resulting densification of network deployments and the introduction of antenna arrays with beamforming result in major increases in fronthaul capacity required for 5G networks As a result, a radical re-design of the radio access network is required since traditional fronthaul technologies are not scaleable In this article the use of analog radio-over-fiber (ARoF) is proposed and demonstrated as a viable alternative which, combined with space division multiplexing in the optical distribution network as well as photonic integration of the required transceivers, shows a path to a scaleable fronthaul solution for 5G The trade-off between digitized and analog fronthaul is discussed and the ARoF architecture proposed by blueSPACE is introduced Two options for the generation of ARoF two-tone signals for mm-wave generation via optical heterodyning are discussed in detail, including designs for the implementation in photonic integrated circuits as well as measurements of their phase noise performance The proposed photonic integrated circuit designs include the use of both InP and SiN platforms for ARoF signal generation and optical beamforming respectively, proposing a joint design that allows for true multi-beam transmission from a single antenna array Phase noise measurements based on laboratory implementations of ARoF generation based on a Mach–Zehnder modulator with suppressed carrier and with an optical phase-locked loop are presented and the suitability of these transmitters is evaluated though phase noise simulations Finally, the viability of the proposed ARoF fronthaul architecture for the transport of high-bandwidth mm-wave 5G signals is proven with the successful implementation of a real-time transmission link based on an ARoF baseband unit with full real-time processing of extended 5G new radio signals with 800 MHz bandwidth, achieving transmission over 10 km of 7-core single-mode multi-core fiber and 9 m mm-wave wireless at 255 GHz with bit error rates below the limit for a 7% overhead hard decision forward error correction

48 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...In this context, the introduction of novel strategies and technologies becomes a key factor [5], [6], including the introduction of millimeter wave (mm-wave) radio frequencies [7], [8]....

    [...]

Posted Content
TL;DR: In this paper, a hybrid analog and digital precoding scheme was proposed to improve the achievable spectral efficiency (SE) of a generalized spatial modulation (GenSM) aided mmWave MIMO system to convey an extra data stream via the index of the active antennas group.
Abstract: The application of hybrid precoding in millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems has been proved effective for reducing the number of radio frequency (RF) chains. However, the maximum number of independent data streams is conventionally restricted by the number of RF chains, which leads to limiting the spatial multiplexing gain. To further improve the achievable spectral efficiency (SE), in this paper we propose a novel generalized spatial modulation (GenSM) aided mmWave MIMO system to convey an extra data stream via the index of the active antennas group, while no extra RF chain is required. Moreover, we also propose a hybrid analog and digital precoding scheme for SE maximization. More specifically, a closed-form lower bound is firstly derived to quantify the achievable SE of the proposed system. By utilizing this lower bound as the cost function, a two-step algorithm is proposed to optimize the hybrid precoder. The proposed algorithm not only utilizes the concavity of the cost function over the digital power allocation vector, but also invokes the convex $\ell_\infty$ relaxation to handle the non-convex constraint imposed by analog precoding. Finally, the proposed scheme is shown via simulations to outperform state-of-the-art mmWave MIMO schemes in terms of achievable SE.

48 citations

Journal ArticleDOI
TL;DR: In this article, a hybrid THz photonic-wireless transmission based on a THz orthogonal polarization dual-antenna scheme is presented, achieving a potential total system throughput of 612.65 Gbit/s with an average net spectral efficiency of 4.445 bit/s/Hz per antenna.
Abstract: The proliferation of wireless broadband services have significantly raised the demand for high data rates. Due to the limited bandwidth of radio frequency (RF) bands that are currently in use for communication purposes, the choice of the ‘Terahertz (THz) frequency region’ (0.3–10 THz) is getting favored thanks to its merits of bringing together wireless and optical communications with photonics technologies. We report on an experimental demonstration of a hybrid THz photonic-wireless transmission based on a THz orthogonal polarization dual-antenna scheme. Probabilistic shaped 64-ary quadrature amplitude modulation based orthogonal frequency division multiplexing (64QAM-OFDM) modulation format is used to realize high transmission rate. A potential total system throughput of 612.65 Gbit/s (around 2 × 300 Gbit/s line rate) with an average net spectral efficiency of 4.445 bit/s/Hz per antenna is successfully achieved.

48 citations

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...Mm-wave frequencies, due to the much smaller wavelength, may exploit polarization and new spatial processing techniques, such as massive MIMO and adaptive beamforming [24]....

    [...]

  • ...Small cells offload traffic from base stations by overlaying a layer of small cell access points, which actually decreases the average distance between transmitters and users, resulting in lower propagation losses and higher data rates and energy efficiency [24]....

    [...]

  • ...Massive MIMO base stations allocate antenna arrays at existing macro base stations, which can accurately concentrate transmitted energy to the mobile users [24]....

    [...]

Journal ArticleDOI
TL;DR: Very large MIMO as mentioned in this paper is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation.
Abstract: This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.

2,717 citations

Journal ArticleDOI
Zhouyue Pi1, Farooq Khan1
TL;DR: This article introduces a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system and demonstrates the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment.
Abstract: Almost all mobile communication systems today use spectrum in the range of 300 MHz-3 GHz. In this article, we reason why the wireless community should start looking at the 3-300 GHz spectrum for mobile broadband applications. We discuss propagation and device technology challenges associated with this band as well as its unique advantages for mobile communication. We introduce a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system. We demonstrate the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment. A few key concepts in MMB network architecture such as the MMB base station grid, MMB interBS backhaul link, and a hybrid MMB + 4G system are described. We also discuss beamforming techniques and the frame structure of the MMB air interface.

2,487 citations


"Millimeter Wave Mobile Communicatio..." refers background in this paper

  • ...INTRODUCTION The rapid increase of mobile data growth and the use of smartphones are creating unprecedented challenges for wireless service providers to overcome a global bandwidth shortage [1], [2]....

    [...]

  • ...6 GHz radio spectrum bands for wireless communications [2]....

    [...]

  • ...With an evolution from fixed broadband to mobile broadband, more converged, personalized, convenient and seamless secure services will be achieved, and Samsung has recently made contributions in the area of mm-wave wireless [2], [12]....

    [...]

01 Jan 2012
TL;DR: This leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC.
Abstract: For cellular radio engineers and technicians. The leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications. This book also contains up-to-date information on the major wireless communications standards from around the world. Covers every fundamental aspect of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC. Theodore Rappaport is Series Editor for the Prentice Hall Communication, Engineering, and Emerging Technologies Series.

1,813 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...In order to achieve increased measurement dynamic range for increased coverage distance, we used a sliding correlator spread spectrum system [5]....

    [...]

  • ...Current 2G, 3G, 4G, & LTE-A spectrum and bandwidth allocations [5]....

    [...]