scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!

TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Citations
More filters
Journal ArticleDOI
TL;DR: Mixed-signal CMOS integrated circuits designs are proposed for the implementation of DVM multibeam algorithms along with low-complexity digital realizations to achieve hybrid beamforming for mmW applications.
Abstract: This paper proposes a low-complexity wideband beamforming subarray for millimeter wave (mmW) 5G wireless communications. The multibeam subarray is based on using a novel delay Vandermonde matrix (DVM) algorithm to efficiently generate analog true-time-delay beams that have no beam squint. A factorization for the DVM leading to low-complexity analog realizations is provided and complexity analysis for real and complex inputs is derived. The DVM is a special case of a Vandermonde matrix but with complex nodes that lack any special properties (unlike the discrete Fourier transform matrix). Error bounds for the DVM are established and then analyzed for numerical stability. Mixed-signal CMOS integrated circuits designs are proposed for the implementation of DVM multibeam algorithms along with low-complexity digital realizations to achieve hybrid beamforming for mmW applications. Analog–digital hybrid mmW multibeam beamforming circuits and systems are designed, for example, with eight beams at 28 GHz and simulated in cadence for functional verification.

39 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ..., vehicles, people, buildings) and are thus more directional than the microwave channels used in existing sub-6 GHz cellular bands [1]....

    [...]

Proceedings ArticleDOI
01 Nov 2019
TL;DR: A novel compact antenna for the millimetre-wave (MMW) frequency range, having some ultra-wideband capability and potentially acceptable figure at the important 60 GHz oxygen-absorption band, which may be deployed later under 5G or the forthcoming sixth generation.
Abstract: This paper introduces a novel compact antenna for the millimetre-wave (MMW) frequency range, having some ultra-wideband capability. The proposed antenna has been designed to target the 5th generation operating bands ranging from 24GHz to 70GHz and can be considered as a potential candidate for 5G wireless networks. The designed antenna uses a microstrip patch structure, fed by coplanar waveguide (CPW); it shows excellent return loss performance in the 36 GHz band that is expected to be deployed for 5G mobile in the relatively near future, but it also has adequate return loss from 30 to 50 GHz and a potentially acceptable figure at the important 60 GHz oxygen-absorption band, which may be deployed later under 5G or the forthcoming sixth generation. The design is etched on high performance planar substrate, using a coplanar waveguide structure on the upper surface, but with a defected ground plane underneath.

39 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...In 4G LTE (a stepping stone to 5G) many applications and networks are connected to deliver ultra-fast and efficient high-speed communication for end users [9] and researchers have shown great interest in moving up to millimetre-wave and sub-millimetre-wave frequencies as these offer the logical next step for upcoming wireless technology [10]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a stochastic block gradient descent method is proposed to learn sensible blockage patterns without searching for all combinations of potentially blocked links, which improves the robustness of beamforming in the presence of random blockages.
Abstract: A fundamental challenge for millimeter wave (mmWave) communications lies in its sensitivity to the presence of blockages, which impact the connectivity of the communication links and ultimately the reliability of the network. In this paper, we analyze a mmWave communication system assisted by multiple reconfigurable intelligent surface (RISs) for enhancing the network reliability and connectivity in the presence of random blockages. To enhance the robustness of beamforming in the presence of random blockages, we formulate a stochastic optimization problem based on the minimization of the sum outage probability. To tackle the proposed optimization problem, we introduce a low-complexity algorithm based on the stochastic block gradient descent method, which learns sensible blockage patterns without searching for all combinations of potentially blocked links. Numerical results confirm the performance benefits of the proposed algorithm in terms of outage probability and effective data rate.

39 citations

Proceedings ArticleDOI
04 Jun 2017
TL;DR: In this article, a 0 mW two-channel 28 GHz bi-directional phased array chip was presented using flip-chip interconnects in 45nm CMOS SOI.
Abstract: This paper presents a 0 mW two-channel 28 GHz bi-directional phased-array chip packaged using flip-chip interconnects in 45nm CMOS SOI. The design alternates switched-LC phase shifters with switched attenuators to result in 5-bit phase control with an rms gain and phase error 1dB of 5 dBm. In the TX mode, the measured output P 1dB is −2 dBm. This work presents an efficient solution for the construction of high-linearity and high-power phased-array base-stations by combining GaAs front-ends with a passive silicon core chip.

39 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...The standard is being developed, but the FCC has already allowed for base-stations with EIRP of 55, 65 and even 75 dBm (July 2016 ruling) [1]....

    [...]

Journal ArticleDOI
TL;DR: Adaptive tuning for varying atmospheric absorption meets the military requirements for quickly adjusting covert communication zones to accommodate potentially rapid movements of network nodes, dynamic output power constraints, and changing environmental conditions.
Abstract: Military communications networks can leverage much of the millimeter-wave (mm-wave) technology being investigated and developed for 5G cellular but require special attention to the unique military requirements. This paper highlights the special communications' requirements of specific military local area networks and discusses how higher band mm-wave technology can contribute to high data rates and simultaneously achieve covertness. Adaptive tuning for varying atmospheric absorption meets the military requirements for quickly adjusting covert communication zones to accommodate potentially rapid movements of network nodes, dynamic output power constraints, and changing environmental conditions.

39 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...around 60, 118, 183, and 323 and 380 GHz [5], [8], adaptive tuning can now be used to achieve enhanced security....

    [...]

  • ...In this case the reverse conclusion is drawn: the propagation conditions improve significantly for higher mm-wave frequencies on a perarea comparison, when weather effects are ignored [1]–[3], [5], [6], since the gain of an antenna with a fixed physical size scales with the square of the frequency, as discussed in [1], [2] and inmore detail below....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...Mm-wave frequencies, due to the much smaller wavelength, may exploit polarization and new spatial processing techniques, such as massive MIMO and adaptive beamforming [24]....

    [...]

  • ...Small cells offload traffic from base stations by overlaying a layer of small cell access points, which actually decreases the average distance between transmitters and users, resulting in lower propagation losses and higher data rates and energy efficiency [24]....

    [...]

  • ...Massive MIMO base stations allocate antenna arrays at existing macro base stations, which can accurately concentrate transmitted energy to the mobile users [24]....

    [...]

Journal ArticleDOI
TL;DR: Very large MIMO as mentioned in this paper is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation.
Abstract: This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.

2,717 citations

Journal ArticleDOI
Zhouyue Pi1, Farooq Khan1
TL;DR: This article introduces a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system and demonstrates the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment.
Abstract: Almost all mobile communication systems today use spectrum in the range of 300 MHz-3 GHz. In this article, we reason why the wireless community should start looking at the 3-300 GHz spectrum for mobile broadband applications. We discuss propagation and device technology challenges associated with this band as well as its unique advantages for mobile communication. We introduce a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system. We demonstrate the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment. A few key concepts in MMB network architecture such as the MMB base station grid, MMB interBS backhaul link, and a hybrid MMB + 4G system are described. We also discuss beamforming techniques and the frame structure of the MMB air interface.

2,487 citations


"Millimeter Wave Mobile Communicatio..." refers background in this paper

  • ...INTRODUCTION The rapid increase of mobile data growth and the use of smartphones are creating unprecedented challenges for wireless service providers to overcome a global bandwidth shortage [1], [2]....

    [...]

  • ...6 GHz radio spectrum bands for wireless communications [2]....

    [...]

  • ...With an evolution from fixed broadband to mobile broadband, more converged, personalized, convenient and seamless secure services will be achieved, and Samsung has recently made contributions in the area of mm-wave wireless [2], [12]....

    [...]

01 Jan 2012
TL;DR: This leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC.
Abstract: For cellular radio engineers and technicians. The leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications. This book also contains up-to-date information on the major wireless communications standards from around the world. Covers every fundamental aspect of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC. Theodore Rappaport is Series Editor for the Prentice Hall Communication, Engineering, and Emerging Technologies Series.

1,813 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...In order to achieve increased measurement dynamic range for increased coverage distance, we used a sliding correlator spread spectrum system [5]....

    [...]

  • ...Current 2G, 3G, 4G, & LTE-A spectrum and bandwidth allocations [5]....

    [...]