scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!

TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Citations
More filters
Proceedings ArticleDOI
08 Jun 2015
TL;DR: This paper presents 28 GHz and 73 GHz millimeter-wave propagation measurements performed in a typical office environment using a 400 Megachip-per-second broadband sliding correlator channel sounder and highly directional steerable 15 dBi and 20 dBi horn antennas.
Abstract: This paper presents 28 GHz and 73 GHz millimeter-wave propagation measurements performed in a typical office environment using a 400 Megachip-per-second broadband sliding correlator channel sounder and highly directional steerable 15 dBi (30° beamwidth) and 20 dBi (15° beamwidth) horn antennas. Power delay profiles were acquired for 48 transmitter-receiver location combinations over distances ranging from 3.9 m to 45.9 m with maximum transmit powers of 24 dBm and 12.3 dBm at 28 GHz and 73 GHz, respectively. Directional and omnidirectional path loss models and RMS delay spread statistics are presented for line-of-sight and non-line-of-sight environments for both co- and cross-polarized antenna configurations. The LOS omnidirectional path loss exponents were 1.1 and 1.3 at 28 GHz and 73 GHz, and 2.7 and 3.2 in NLOS at 28 GHz and 73 GHz, respectively, for vertically-polarized antennas. The mean directional RMS delay spreads were 18.4 ns and 13.3 ns, with maximum values of 193 ns and 288 ns at 28 GHz and 73 GHz, respectively.

129 citations

Journal ArticleDOI
TL;DR: The paper proposes a classification, performance evaluation and optimization of PAPR reduction techniques for commercial, public safety, and tactical applications, and includes a new category, namely, hybrid techniques.
Abstract: Orthogonal frequency division multiplexing (OFDM) is an efficient multi-carrier modulation technique for wireless communication. However, one of the main drawbacks encountered in implementing it is its resultant high peak-to-average power ratio (PAPR). Many techniques have been proposed in the literature to substantially decrease the peaks in the OFDM signal. The problem with these, however, is that their effects on other parameters are not always positive. These effects include a decrease in the bit error rate (BER), an increase in complexity, or a reduction in the bit rate. The objective of this paper is to describe the PAPR problem in a bid to reduce the peaks in the OFDM signal. The paper proposes a classification, performance evaluation and optimization of PAPR reduction techniques for commercial, public safety, and tactical applications. In the taxonomy proposed herein, we also include a new category, namely, hybrid techniques. Furthermore, we compare the principal characteristics through a complementary cumulative distribution function and BER evaluation, and conclude on the importance of hybrid techniques, when the goal is to both improve the BER and reduce the PAPR.

128 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...A trend in 5G is to enable higher frequency bands to obtain more unused spectrum, and previous research has led to fruitful researches [6]....

    [...]

Proceedings ArticleDOI
01 Jul 2017
TL;DR: In this article, a peer-to-peer measurement campaign was conducted with 7o, 15o, and 60o half-power beamwidth (HPBW) antenna pairs at 73.5 GHz and with 1 GHz of RF nullto-null bandwidth in a heavily populated open square scenario in Brooklyn, New York, to study blockage events caused by typical pedestrian traffic.
Abstract: Rapidly fading channels caused by pedestrians in dense urban environments will have a significant impact on millimeter-wave (mmWave) communications systems that employ electrically-steerable and narrow beamwidth antenna arrays. A peer- to-peer (P2P) measurement campaign was conducted with 7o, 15o, and 60o half- power beamwidth (HPBW) antenna pairs at 73.5 GHz and with 1 GHz of RF null-to-null bandwidth in a heavily populated open square scenario in Brooklyn, New York, to study blockage events caused by typical pedestrian traffic. Antenna beamwidths that range approximately an order of magnitude were selected to gain knowledge of fading events for antennas with different beamwidths since antenna patterns for mmWave systems will be electronically-adjustable. Two simple modeling approaches in the literature are introduced to characterize the blockage events by either a two-state Markov model or a four-state piecewise linear modeling approach. Transition probability rates are determined from the measurements and it is shown that average fade durations with a -5 dB threshold are 299.0 ms for 7o HPBW antennas and 260.2 ms for 60o HPBW antennas. The four-state piecewise linear modeling approach shows that signal strength decay and rise times are asymmetric for blockage events and that mean signal attenuations (average fade depths) are inversely proportional to antenna HPBW, where 7o and 60o HPBW antennas resulted in mean signal fades of 15.8 dB and 11.5 dB, respectively. The models presented herein are valuable for extending statistical channel models at mmWave to accurately simulate real- world pedestrian blockage events when designing fifth-generation (5G) wireless systems.

128 citations

Journal ArticleDOI
TL;DR: In this article, the achievable rate and the energy efficiency of analog, hybrid, and digital combining (AC, HC, and DC) for millimeter wave (mmW) receivers were investigated.
Abstract: In this paper, we study the achievable rate and the energy efficiency of analog, hybrid, and digital combining (AC, HC, and DC) for millimeter wave (mmW) receivers. We take into account the power consumption of all receiver components, not just analog-to-digital converters (ADCs), determine some practical limitations of beamforming in each architecture, and develop performance analysis charts that enable comparison of different receivers simultaneously in terms of two metrics, namely, spectral efficiency (SE) and energy efficiency (EE). We present a multi-objective utility optimization interpretation to find the best SE-EE weighted tradeoff among AC, DC, and HC schemes. We consider an additive quantization noise model to evaluate the achievable rates with low resolution ADCs. Our analysis shows that AC is only advantageous if the channel rank is strictly one, the link has very low SNR, or there is a very stringent low power constraint at the receiver. Otherwise, we show that the usual claim that DC requires the highest power is not universally valid. Rather, either DC or HC alternatively results in the better SE versus EE tradeoff depending strongly on the considered power consumption characteristic values for each component of the mmW receiver.

127 citations

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...Mm-wave frequencies, due to the much smaller wavelength, may exploit polarization and new spatial processing techniques, such as massive MIMO and adaptive beamforming [24]....

    [...]

  • ...Small cells offload traffic from base stations by overlaying a layer of small cell access points, which actually decreases the average distance between transmitters and users, resulting in lower propagation losses and higher data rates and energy efficiency [24]....

    [...]

  • ...Massive MIMO base stations allocate antenna arrays at existing macro base stations, which can accurately concentrate transmitted energy to the mobile users [24]....

    [...]

Journal ArticleDOI
TL;DR: Very large MIMO as mentioned in this paper is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation.
Abstract: This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.

2,717 citations

Journal ArticleDOI
Zhouyue Pi1, Farooq Khan1
TL;DR: This article introduces a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system and demonstrates the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment.
Abstract: Almost all mobile communication systems today use spectrum in the range of 300 MHz-3 GHz. In this article, we reason why the wireless community should start looking at the 3-300 GHz spectrum for mobile broadband applications. We discuss propagation and device technology challenges associated with this band as well as its unique advantages for mobile communication. We introduce a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system. We demonstrate the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment. A few key concepts in MMB network architecture such as the MMB base station grid, MMB interBS backhaul link, and a hybrid MMB + 4G system are described. We also discuss beamforming techniques and the frame structure of the MMB air interface.

2,487 citations


"Millimeter Wave Mobile Communicatio..." refers background in this paper

  • ...INTRODUCTION The rapid increase of mobile data growth and the use of smartphones are creating unprecedented challenges for wireless service providers to overcome a global bandwidth shortage [1], [2]....

    [...]

  • ...6 GHz radio spectrum bands for wireless communications [2]....

    [...]

  • ...With an evolution from fixed broadband to mobile broadband, more converged, personalized, convenient and seamless secure services will be achieved, and Samsung has recently made contributions in the area of mm-wave wireless [2], [12]....

    [...]

01 Jan 2012
TL;DR: This leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC.
Abstract: For cellular radio engineers and technicians. The leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications. This book also contains up-to-date information on the major wireless communications standards from around the world. Covers every fundamental aspect of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC. Theodore Rappaport is Series Editor for the Prentice Hall Communication, Engineering, and Emerging Technologies Series.

1,813 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...In order to achieve increased measurement dynamic range for increased coverage distance, we used a sliding correlator spread spectrum system [5]....

    [...]

  • ...Current 2G, 3G, 4G, & LTE-A spectrum and bandwidth allocations [5]....

    [...]