scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!

TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Citations
More filters
Journal ArticleDOI
TL;DR: Simulation results demonstrate that the proposed coordination scheme based on large-scale CSI only can still offer substantial gains over the existing methods, and performs well in terms of both user fairness and system efficiency.
Abstract: Millimeter-wave (mmWave) communication is envisioned to provide orders of magnitude capacity improvement. However, it is challenging to realize a sufficient link margin due to high path loss and blockages. To address this difficulty, in this paper, we explore the potential gain of ultra-densification for enhancing mmWave communications from a network-level perspective. By deploying the mmWave base stations (BSs) in an extremely dense and amorphous fashion, the access distance is reduced and the choice of serving BSs is enriched for each user, which are intuitively effective for mitigating the propagation loss and blockages. Nevertheless, co-channel interference under this model will become a performance-limiting factor. To solve this problem, we propose a large-scale channel state information (CSI)-based interference coordination approach. Note that the large-scale CSI is highly location-dependent, and can be obtained with a quite low cost. Thus, the scalability of the proposed coordination framework can be guaranteed. Particularly, using only the large-scale CSI of interference links, a coordinated frequency resource block allocation problem is formulated for maximizing the minimum achievable rate of the users, which is uncovered to be an NP-hard integer programming problem. To circumvent this difficulty, a greedy scheme with polynomial-time complexity is proposed by adopting the bisection method and linear integer programming tools. Simulation results demonstrate that the proposed coordination scheme based on large-scale CSI only can still offer substantial gains over the existing methods. Moreover, although the proposed scheme is only guaranteed to converge to a local optimum, it performs well in terms of both user fairness and system efficiency.

102 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...In particular, the millimeter-wave (mmWave) communication has been recognized as a promising technology for providing orders of magnitude capacity improvement [2]-[4], due to the large bandwidth available at mmWave bands....

    [...]

Journal ArticleDOI
TL;DR: The results show that network densification, subarray switching in a user equipment designed with multiple subarrays, fall back mechanisms, etc., can address blockage before it leads to a deleterious impact on the mmW link margin.
Abstract: There has been a growing interest in the commercialization of millimeter-wave (mmW) technology as a part of the fifth-generation new radio wireless standardization efforts. In this direction, many sets of independent measurements show that the biggest determinants of viability of mmW systems are penetration and blockage of mmW signals through different materials in the scattering environment. With this background, the focus of this paper is on understanding the impact of blockage of mmW signals and reduced spatial coverage due to penetration through the human hand, body, vehicles, and so on. Leveraging measurements with a 28-GHz mmW experimental prototype and electromagnetic simulation studies, we first propose statistical models to capture the impact of the hand, human body, and vehicles. We then study the time scales at which mmW signals are disrupted by blockage (hand and human body). Our results show that these events can be attributed to physical movements, and the time scales corresponding to blockage are, hence, on the order of a few 100 ms or more. Network densification, subarray switching in a user equipment designed with multiple subarrays, fall back mechanisms, etc., can address blockage before it leads to a deleterious impact on the mmW link margin.

102 citations

Journal ArticleDOI
TL;DR: Current knowledge provides justification for governments, public health authorities, and physicians/allied health professionals to warn the population that having a cell phone next to the body is harmful, and to support measures to reduce all exposures to RFR.
Abstract: Radiation exposure has long been a concern for the public, policy makers and health researchers. Beginning with radar during World War II, human exposure to radio-frequency radiation (RFR) technologies has grown more than 100,000-fold over time. In 2011, the International Agency for Research on Cancer (IARC) reviewed the published literature and categorized RFR as a ‘possible’ (Group 2B) human carcinogen. A broad range of adverse human health effects associated with RFR have been reported since the IARC review. In addition, three large-scale carcinogenicity studies in rodents exposed to levels of RFR that mimic lifetime human exposures have shown significantly increased rates of Schwannomas and malignant gliomas, as well as chromosomal DNA damage. Of particular concern are the effects of RFR exposure on the developing brain in children. Compared with an adult male, a cell phone held against the head of a child exposes deeper brain structures to greater radiation doses per unit volume, and the young, thin skull’s bone marrow absorbs a roughly 10-fold higher local dose. Recent reports also suggest that men who keep cell phones in their trouser pockets have significantly lower sperm counts and significantly impaired sperm motility and morphology, including mitochondrial DNA damage. Based on the accumulated evidence, we recommend that IARC re-evaluate its 2011 classification of the human carcinogenicity of RFR, and that WHO complete a systematic review of multiple other health effects such as sperm damage. In the interim, current knowledge provides justification for governments, public health authorities, and physicians/allied health professionals to warn the population that having a cell phone next to the body is harmful, and to support measures to reduce all exposures to RFR.

101 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a comprehensive architecture of cellular networks with mmWave access, where mm-wave small cell basestations and a conventional macro basestation are connected to Centralized-RAN to effectively operate the system by enabling power efficient seamless handover as well as centralized resource control including dynamic cell structuring.
Abstract: SUMMARY Triggered by the explosion of mobile traffic, 5G (5th Generation) cellular network requires evolution to increase the system rate 1000 times higher than the current systems in 10 years. Motivated by this common problem, there are several studies to integrate mm-wave access into current cellular networks as multi-band heterogeneous networks to exploit the ultra-wideband aspect of the mm-wave band. The authors of this paper have proposed comprehensive architecture of cellular networks with mmwave access, where mm-wave small cell basestations and a conventional macro basestation are connected to Centralized-RAN (C-RAN) to effectively operate the system by enabling power efficient seamless handover as well as centralized resource control including dynamic cell structuring to match the limited coverage of mm-wave access with high traffic user locations via user-plane/control-plane splitting. In this paper, to prove the effectiveness of the proposed 5G cellular networks with mm-wave access, system level simulation is conducted by introducing an expected future traffic model, a measurement based mm-wave propagation model, and a centralized cell association algorithm by exploiting the C-RAN architecture. The numerical results show the effectiveness of the proposed network to realize 1000 times higher system rate than the current network in 10 years which is not achieved by the small cells using commonly considered 3.5 GHz band. Furthermore, the paper also gives latest status of mm-wave devices and regulations to show the feasibility of using mm-wave in the 5G systems.

101 citations

Journal ArticleDOI
TL;DR: Numerical results show that downlink coverage and SE can be improved using two-hop D2D relaying and mmWave D1D relays achieve better coverage when the density of interferers is large because blockages eliminate interference from NLOS interferers.
Abstract: The susceptibility of millimeter waveform propagation to blockages limits the coverage of millimeter-wave (mmWave) signals. To overcome blockages, we propose to leverage two-hop device-to-device (D2D) relaying. Using stochastic geometry, we derive expressions for the downlink coverage probability of relay-assisted mmWave cellular networks when the D2D links are implemented in either uplink mmWave or uplink microwave bands. We further investigate the spectral efficiency (SE) improvement in the cellular downlink, and the effect of D2D transmissions on the cellular uplink. For mmWave links, we derive the coverage probability using dominant interferer analysis while accounting for both blockages and beamforming gains. For microwave D2D links, we derive the coverage probability considering both line-of-sight and non-line-of-sight (NLOS) propagation. Numerical results show that downlink coverage and SE can be improved using two-hop D2D relaying. Specifically, microwave D2D relays achieve better coverage because D2D connections can be established under NLOS conditions. However, mmWave D2D relays achieve better coverage when the density of interferers is large because blockages eliminate interference from NLOS interferers. The SE on the downlink depends on the relay mode selection strategy, and mmWave D2D relays use a significantly smaller fraction of uplink resources than microwave D2D relays.

101 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...2787990 increasing demands for mobile broadband access [2]....

    [...]

  • ...As noted in the introduction, mmWave systems are expected to leverage highly directional beams to extend their transmission range [2], [19]....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...Mm-wave frequencies, due to the much smaller wavelength, may exploit polarization and new spatial processing techniques, such as massive MIMO and adaptive beamforming [24]....

    [...]

  • ...Small cells offload traffic from base stations by overlaying a layer of small cell access points, which actually decreases the average distance between transmitters and users, resulting in lower propagation losses and higher data rates and energy efficiency [24]....

    [...]

  • ...Massive MIMO base stations allocate antenna arrays at existing macro base stations, which can accurately concentrate transmitted energy to the mobile users [24]....

    [...]

Journal ArticleDOI
TL;DR: Very large MIMO as mentioned in this paper is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation.
Abstract: This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.

2,717 citations

Journal ArticleDOI
Zhouyue Pi1, Farooq Khan1
TL;DR: This article introduces a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system and demonstrates the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment.
Abstract: Almost all mobile communication systems today use spectrum in the range of 300 MHz-3 GHz. In this article, we reason why the wireless community should start looking at the 3-300 GHz spectrum for mobile broadband applications. We discuss propagation and device technology challenges associated with this band as well as its unique advantages for mobile communication. We introduce a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system. We demonstrate the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment. A few key concepts in MMB network architecture such as the MMB base station grid, MMB interBS backhaul link, and a hybrid MMB + 4G system are described. We also discuss beamforming techniques and the frame structure of the MMB air interface.

2,487 citations


"Millimeter Wave Mobile Communicatio..." refers background in this paper

  • ...INTRODUCTION The rapid increase of mobile data growth and the use of smartphones are creating unprecedented challenges for wireless service providers to overcome a global bandwidth shortage [1], [2]....

    [...]

  • ...6 GHz radio spectrum bands for wireless communications [2]....

    [...]

  • ...With an evolution from fixed broadband to mobile broadband, more converged, personalized, convenient and seamless secure services will be achieved, and Samsung has recently made contributions in the area of mm-wave wireless [2], [12]....

    [...]

01 Jan 2012
TL;DR: This leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC.
Abstract: For cellular radio engineers and technicians. The leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications. This book also contains up-to-date information on the major wireless communications standards from around the world. Covers every fundamental aspect of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC. Theodore Rappaport is Series Editor for the Prentice Hall Communication, Engineering, and Emerging Technologies Series.

1,813 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...In order to achieve increased measurement dynamic range for increased coverage distance, we used a sliding correlator spread spectrum system [5]....

    [...]

  • ...Current 2G, 3G, 4G, & LTE-A spectrum and bandwidth allocations [5]....

    [...]