scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!

TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a third-order vertically coupled resonant structure that a U-slot resonator in the ground is used to couple with the feeding resonator and the radiating patch, simultaneously, can significantly improve the bandwidth and frequency selectivity.
Abstract: A novel method of achieving low profile, broadband microstrip array antennas with high antenna gain is proposed for millimeter-wave applications. The element employs a novel third-order vertically coupled resonant structure that a U-slot resonator in the ground is used to couple with the feeding resonator and the radiating patch, simultaneously. This proposed structure can significantly improve the bandwidth and frequency selectivity without increasing the thickness of the antenna. Then, to achieve the subarray, a new wideband power divider with loaded resonators is employed, which can be used to further improve the bandwidth. To demonstrate the working schemes of broadside radiation and scanned beam, two $4 \times 4$ array antennas are implemented on the same board. Measured results agree well with the simulations, showing a wide bandwidth from 22 to 32 GHz (FBW = 37%) with the gain of around 19 dBi. The beam-scanning array can realize a scanning angle of 25° over a broadband. In addition, due to the filtering features are integrated in the design, the proposed antenna could also reduce the complexity and potential cost of the frontends.

90 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...The emerging fifth-generation (5G) mobile communication has attracted intensive research interests in academia and industry because of its huge potentials such as high data rate and significant reduction of digital traffic [1], [2]....

    [...]

Journal ArticleDOI
TL;DR: Simulation results show that the FPS fully-connected hybrid precoder achieves higher hardware efficiency with much fewer phase shifters than existing proposals, and the group-connected mapping achieves a good balance between spectral efficiency and hardware complexity.
Abstract: Hybrid precoding has been recently proposed as a cost-effective transceiver solution for millimeter wave systems. While the number of radio frequency chains has been effectively reduced in existing works, a large number of high-precision phase shifters are still needed. Practical phase shifters are with coarsely quantized phases, and their number should be reduced to a minimum due to cost and power consideration. In this paper, we propose a novel hardware-efficient implementation for hybrid precoding, called the fixed phase shifter (FPS) implementation. It only requires a small number of phase shifters with quantized and fixed phases. To enhance the spectral efficiency, a switch network is put forward to provide dynamic connections from phase shifters to antennas, which is adaptive to the channel states. An effective alternating minimization algorithm is developed with closed-form solutions in each iteration to determine the hybrid precoder and the states of switches. Moreover, to further reduce the hardware complexity, a group-connected mapping strategy is proposed to reduce the number of switches. Simulation results show that the FPS fully-connected hybrid precoder achieves higher hardware efficiency with much fewer phase shifters than existing proposals. Furthermore, the group-connected mapping achieves a good balance between spectral efficiency and hardware complexity.

90 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...U PLIFTING the carrier frequency to millimeter wave (mmwave) bands is an effective approach to meet the capacity requirement of the upcoming 5G networks, and thus mm-wave communication has drawn extensive attention from both academia and industry [2], [3]....

    [...]

Journal ArticleDOI
TL;DR: Simulation results have shown that the proposed indoor positioning scheme is capable of achieving high accuracy as well as significantly lower computational complexity as compared to other previously known indoor positioning techniques.
Abstract: In this paper, a novel three-dimensional (3-D) indoor positioning scheme is proposed for millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. Its operation is based upon a hybrid received signal strength and angle of arrival (RSS-AoA) positioning scheme, which employs only a single access point equipped with a large-scale uniform cylindrical array. To reduce the high computational complexity imposed by the large number of antennas used in mmWave massive MIMO (M3-MIMO) systems, we firstly propose a novel channel compression method. By proper quantization and selection of the received mmWave signals, which exhibit quasioptical and sparse multipath characteristics, the channel compression method reduces the dimension of the received signal space while maintaining the accuracy of the position estimation. Then, we propose a beamspace transformation approach to transform signal vectors in the element space to the beamspace, and thus the computational complexity of the angle estimation is significantly reduced. Finally, a novel hybrid RSS-AoA positioning scheme is designed for the computations of the 3-D coordinates of the target mobile terminal. Simulation results have shown that the proposed indoor positioning scheme is capable of achieving high accuracy as well as significantly lower computational complexity as compared to other previously known indoor positioning techniques.

90 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...2797993 only enable to provide very high data rates and spectral efficiencies [2]–[4], but also can achieve accurate indoor localization because of their high temporal resolution and high directivity [5]....

    [...]

Proceedings ArticleDOI
TL;DR: In this article, the authors conduct a measurement study of commercial 5G performance on smartphones by closely examining 5G networks of three carriers (two mmWave carriers, one mid-band carrier) in three U.S. cities.
Abstract: We conduct to our knowledge a first measurement study of commercial 5G performance on smartphones by closely examining 5G networks of three carriers (two mmWave carriers, one mid-band carrier) in three U.S. cities. We conduct extensive field tests on 5G performance in diverse urban environments. We systematically analyze the handoff mechanisms in 5G and their impact on network performance. We explore the feasibility of using location and possibly other environmental information to predict the network performance. We also study the app performance (web browsing and HTTP download) over 5G. Our study consumes more than 15 TB of cellular data. Conducted when 5G just made its debut, it provides a "baseline" for studying how 5G performance evolves, and identifies key research directions on improving 5G users' experience in a cross-layer manner. We have released the data collected from our study (referred to as 5Gophers) at this https URL.

90 citations

Journal ArticleDOI
TL;DR: Simulation results show that, even when both the transmitter and the receivers are equipped with the fewest RF chains that are required to support multistream transmission, hybrid precoding can still approach the performance of fully digital precoding in both the infinite resolution phase shifter case and the finite resolution phase shift case with several bits quantization.
Abstract: As a key enabling technology for 5G wireless, millimeter wave (mmWave) communication motivates the utilization of large-scale antenna arrays for achieving highly directional beamforming. However, the high cost and power consumption of RF chains stand in the way of adoption of the optimal fully digital precoding in large-array systems. To reduce the number of RF chains while still maintaining the spatial multiplexing gain of large array, a hybrid precoding architecture has been proposed for mmWave systems and received considerable interest in both industry and academia. However, the optimal hybrid precoding design has not been fully understood, especially for the multiuser MIMO case. This paper is the first work that directly addresses the nonconvex hybrid precoding problem of mmWave multi-user MIMO systems (without any approximation) by using penalty dual decomposition (PDD) method. The proposed PDD method have a guaranteed convergence to KKT solutions of the hybrid precoding problem under a mild assumption. Simulation results show that, even when both the transmitter and the receivers are equipped with the fewest RF chains that are required to support multistream transmission, hybrid precoding can still approach the performance of fully digital precoding in both the infinite resolution phase shifter case and the finite resolution phase shifter case with several bits quantization.

90 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...THE frequency bandwidth scarcity has motivated the exploration of the underutilized millimeter wave (mmWave) frequency spectrum for future broadband cellular communication networks [1]–[5]....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...Mm-wave frequencies, due to the much smaller wavelength, may exploit polarization and new spatial processing techniques, such as massive MIMO and adaptive beamforming [24]....

    [...]

  • ...Small cells offload traffic from base stations by overlaying a layer of small cell access points, which actually decreases the average distance between transmitters and users, resulting in lower propagation losses and higher data rates and energy efficiency [24]....

    [...]

  • ...Massive MIMO base stations allocate antenna arrays at existing macro base stations, which can accurately concentrate transmitted energy to the mobile users [24]....

    [...]

Journal ArticleDOI
TL;DR: Very large MIMO as mentioned in this paper is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation.
Abstract: This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.

2,717 citations

Journal ArticleDOI
Zhouyue Pi1, Farooq Khan1
TL;DR: This article introduces a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system and demonstrates the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment.
Abstract: Almost all mobile communication systems today use spectrum in the range of 300 MHz-3 GHz. In this article, we reason why the wireless community should start looking at the 3-300 GHz spectrum for mobile broadband applications. We discuss propagation and device technology challenges associated with this band as well as its unique advantages for mobile communication. We introduce a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system. We demonstrate the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment. A few key concepts in MMB network architecture such as the MMB base station grid, MMB interBS backhaul link, and a hybrid MMB + 4G system are described. We also discuss beamforming techniques and the frame structure of the MMB air interface.

2,487 citations


"Millimeter Wave Mobile Communicatio..." refers background in this paper

  • ...INTRODUCTION The rapid increase of mobile data growth and the use of smartphones are creating unprecedented challenges for wireless service providers to overcome a global bandwidth shortage [1], [2]....

    [...]

  • ...6 GHz radio spectrum bands for wireless communications [2]....

    [...]

  • ...With an evolution from fixed broadband to mobile broadband, more converged, personalized, convenient and seamless secure services will be achieved, and Samsung has recently made contributions in the area of mm-wave wireless [2], [12]....

    [...]

01 Jan 2012
TL;DR: This leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC.
Abstract: For cellular radio engineers and technicians. The leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications. This book also contains up-to-date information on the major wireless communications standards from around the world. Covers every fundamental aspect of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC. Theodore Rappaport is Series Editor for the Prentice Hall Communication, Engineering, and Emerging Technologies Series.

1,813 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...In order to achieve increased measurement dynamic range for increased coverage distance, we used a sliding correlator spread spectrum system [5]....

    [...]

  • ...Current 2G, 3G, 4G, & LTE-A spectrum and bandwidth allocations [5]....

    [...]