scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!

TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Citations
More filters
Journal ArticleDOI
TL;DR: Simulations and theoretical results provide insight on the cases, where a hybrid transceiver is the most energy efficient solution or not and for both single- and multi-carrier systems under the orthogonal frequency division multiplexing modulation.
Abstract: Hybrid analog-digital transceivers are employed with the view to reduce the hardware complexity and the energy consumption in millimeter wave/large antenna array systems by reducing the number of their radio frequency (RF) chains However, the analog processing network requires power for its operation and it further introduces power losses, dependent on the number of the transceiver antennas and RF chains that have to be compensated Thus, the reduction in the power consumption is usually much less than it is expected and given that the hybrid solutions present in general inferior spectral efficiency than a fully digital one, it is possible for the former to be less energy efficient than the latter in several cases Existing approaches propose hybrid solutions that maximize the spectral efficiency of the system without providing any insight on their energy requirements/efficiency To that end, in this paper, a novel algorithmic framework is developed based on which energy efficient hybrid transceiver designs are derived and their performance is examined with respect to the number of RF chains and antennas Solutions are proposed for fully and partially connected hybrid architectures and for both single- and multi-carrier systems under the orthogonal frequency division multiplexing modulation Simulations and theoretical results provide insight on the cases, where a hybrid transceiver is the most energy efficient solution or not

84 citations

Proceedings ArticleDOI
31 Aug 2015
TL;DR: Numerical results demonstrate that the proposed algorithm outperforms the conventional AMP in terms of the AoA and AoD estimation accuracy for the sparse millimeter wave MIMO channel.
Abstract: In this paper, we investigate an angle of arrival (AoA) and angle of departure (AoD) estimation algorithm for sparse millimeter wave multiple-input multiple-output (MIMO) channels. The analytical channel model whose use we advocate here is the beam space (or virtual) MIMO channel representation. By leveraging the beam space MIMO concept, we characterize probabilistic channel priors under an analog precoding and combining constraints. This investigation motivates Bayesian inference approaches to virtual AoA and AoD estimation. We divide the estimation task into downlink sounding for AoA estimation and uplink sounding for AoD estimation. A belief propagation (BP)-type algorithm is adopted, leading to computationally efficient approximate message passing (AMP) and approximate log-likelihood ratio testing (ALLRT) algorithms. Numerical results demonstrate that the proposed algorithm outperforms the conventional AMP in terms of the AoA and AoD estimation accuracy for the sparse millimeter wave MIMO channel.

84 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...This has aroused considerable interest in millimeter wave wireless techniques [1]....

    [...]

Journal ArticleDOI
TL;DR: The non-regenerative massive multi-input-multi-output (MIMO) non-orthogonal multiple access (NOMA) relay systems are introduced in this paper and it is demonstrated that the ratio between the transmitter antenna number and the relay number is a dominate factor of the system performance.
Abstract: The non-regenerative massive multi-input-multi-output (MIMO) non-orthogonal multiple access (NOMA) relay systems are introduced in this paper. The NOMA is invoked with a superposition coding technique at the transmitter and successive interference cancellation (SIC) technique at the receiver. In addition, a maximum mean square error-SIC receiver design is adopted. With the aid of deterministic equivalent and matrix analysis tools, a closed-form expression of the signal to interference plus noise ratio (SINR) is derived. To characterize the performance of the considered systems, closed-form expressions of the capacity and sum rate are further obtained based on the derived SINR expression. Insights from the derived analytical results demonstrate that the ratio between the transmitter antenna number and the relay number is a dominate factor of the system performance. Afterward, the correctness of the derived expressions are verified by the Monte Carlo simulations with numerical results. Simulation results also illustrate that: 1) the transmitter antenna, averaged power value, and user number display the positive correlations on the capacity and sum rate performances, whereas the relay number displays a negative correlation on the performance and 2) the combined massive-MIMO-NOMA scheme is capable of achieving higher capacity performance compared with the conventional MIMO-NOMA, relay-assisted NOMA, and massive-MIMO orthogonal multiple access (OMA) scheme.

84 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...This is because that in 5G, even wider bandwidth can be assigned to meet the even fast transmission rate requirement [41], [42]....

    [...]

Journal ArticleDOI
TL;DR: This paper aims to provide readers with an understanding of UAV-aided networks in terms of their architecture, benefits, challenges, and various game theoretical solutions applied to these communications networks.
Abstract: Unmanned aerial vehicles (UAVs) can be deployed as wireless relays or aerial base stations to improve network connectivity and coverage in cellular networks. UAVs can also be used to significantly enhance the performance of mobile ad-hoc networks and wireless sensor networks. In the future, UAVs are expected to become an integral part of the fifth generation wireless networks as well as key enablers of the coming massive Internet of Things. However, there are still many challenging issues in designing architectures and deployment of UAV-based networks. To address the issues, game theory has recently been adopted as an effective tool for modeling and analyzing problems in UAV-aided networks. In this paper, we survey the applications of game theory in solving various UAV-assisted networks challenges. We first provide a brief introduction to wireless communications with UAVs and then introduce basic game theory concepts and their relation to wireless networks. We further present the classification and brief introduction to the games applied to solve problems in UAV-aided networks. We then provide a comprehensive literature review on game-theoretic techniques utilized in dealing with challenges in the UAV-based wireless networks. Finally, we introduce advanced distributed schemes for interference management in large UAV-assisted communication networks. This paper aims to provide readers with an understanding of UAV-aided networks in terms of their architecture, benefits, challenges, and various game theoretical solutions applied to these communications networks.

84 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...It is the band of spectrum ranging from 30 GHz to 300 GHz which can be used for ultra-fast 5G mobile broadband [124], [125]....

    [...]

Posted Content
TL;DR: An overhead model is proposed and incorporated in the expressions of the system rate and energy efficiency, which are then optimized with respect to the phase shifts of the reconfigurable intelligent surface, the transmit and receive filters, the power and bandwidth used for the communication and feedback phases.
Abstract: Reconfigurable intelligent surfaces have emerged as a promising technology for future wireless networks. Given that a large number of reflecting elements is typically used, and that the surface has no signal processing capabilities, a major challenge is to cope with the overhead that is required to estimate the channel state information and to report the optimized phase shifts to the surface. This issue has not been addressed by previous works, which do not explicitly consider the overhead during the resource allocation phase. This work aims at filling this gap, developing an overhead-aware resource allocation framework for wireless networks where reconfigurable intelligent surfaces are used to improve the communication performance. An overhead model is developed and incorporated in the expressions of the system rate and energy efficiencies, which are then optimized with respect to the phase shifts of the reconfigurable intelligent surface, the transmit and receive filters, and the power and bandwidth used for the communication and feedback phases. The bi-objective maximization of the rate and energy efficiency is carried out as well. The proposed framework allows characterizing the trade-off between optimized radio resources and the related overhead in networks with reconfigurable intelligent surfaces.

83 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...3023578 and millimeter-wave communications [4] are three fundamental technologies that will spearhead the emergence of future wireless networks [5]....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...Mm-wave frequencies, due to the much smaller wavelength, may exploit polarization and new spatial processing techniques, such as massive MIMO and adaptive beamforming [24]....

    [...]

  • ...Small cells offload traffic from base stations by overlaying a layer of small cell access points, which actually decreases the average distance between transmitters and users, resulting in lower propagation losses and higher data rates and energy efficiency [24]....

    [...]

  • ...Massive MIMO base stations allocate antenna arrays at existing macro base stations, which can accurately concentrate transmitted energy to the mobile users [24]....

    [...]

Journal ArticleDOI
TL;DR: Very large MIMO as mentioned in this paper is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation.
Abstract: This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.

2,717 citations

Journal ArticleDOI
Zhouyue Pi1, Farooq Khan1
TL;DR: This article introduces a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system and demonstrates the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment.
Abstract: Almost all mobile communication systems today use spectrum in the range of 300 MHz-3 GHz. In this article, we reason why the wireless community should start looking at the 3-300 GHz spectrum for mobile broadband applications. We discuss propagation and device technology challenges associated with this band as well as its unique advantages for mobile communication. We introduce a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system. We demonstrate the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment. A few key concepts in MMB network architecture such as the MMB base station grid, MMB interBS backhaul link, and a hybrid MMB + 4G system are described. We also discuss beamforming techniques and the frame structure of the MMB air interface.

2,487 citations


"Millimeter Wave Mobile Communicatio..." refers background in this paper

  • ...INTRODUCTION The rapid increase of mobile data growth and the use of smartphones are creating unprecedented challenges for wireless service providers to overcome a global bandwidth shortage [1], [2]....

    [...]

  • ...6 GHz radio spectrum bands for wireless communications [2]....

    [...]

  • ...With an evolution from fixed broadband to mobile broadband, more converged, personalized, convenient and seamless secure services will be achieved, and Samsung has recently made contributions in the area of mm-wave wireless [2], [12]....

    [...]

01 Jan 2012
TL;DR: This leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC.
Abstract: For cellular radio engineers and technicians. The leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications. This book also contains up-to-date information on the major wireless communications standards from around the world. Covers every fundamental aspect of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC. Theodore Rappaport is Series Editor for the Prentice Hall Communication, Engineering, and Emerging Technologies Series.

1,813 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...In order to achieve increased measurement dynamic range for increased coverage distance, we used a sliding correlator spread spectrum system [5]....

    [...]

  • ...Current 2G, 3G, 4G, & LTE-A spectrum and bandwidth allocations [5]....

    [...]