scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!

TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed hybrid architectures based on switching networks to reduce the complexity and the power consumption of the structures based on phase shifters and defined a power consumption model and used it to evaluate the energy efficiency of both structures.
Abstract: Hybrid analog/digital multiple-input multiple-output architectures were recently proposed as an alternative for fully digital-precoding in millimeter wave wireless communication systems. This is motivated by the possible reduction in the number of RF chains and analog-to-digital converters. In these architectures, the analog processing network is usually based on variable phase shifters. In this paper, we propose hybrid architectures based on switching networks to reduce the complexity and the power consumption of the structures based on phase shifters. We define a power consumption model and use it to evaluate the energy efficiency of both structures. To estimate the complete MIMO channel, we propose an open-loop compressive channel estimation technique that is independent of the hardware used in the analog processing stage. We analyze the performance of the new estimation algorithm for hybrid architectures based on phase shifters and switches. Using the estimate, we develop two algorithms for the design of the hybrid combiner based on switches and analyze the achieved spectral efficiency. Finally, we study the tradeoffs between power consumption, hardware complexity, and spectral efficiency for hybrid architectures based on phase shifting networks and switching networks. Numerical results show that architectures based on switches obtain equal or better channel estimation performance to that obtained using phase shifters, while reducing hardware complexity and power consumption. For equal power consumption, all the hybrid architectures provide similar spectral efficiencies.

632 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a recital on the historic heritages and novel challenges facing massive/large-scale multiple-input multiple-output (LS-MIMO) systems from a detection perspective.
Abstract: The emerging massive/large-scale multiple-input multiple-output (LS-MIMO) systems that rely on very large antenna arrays have become a hot topic of wireless communications. Compared to multi-antenna aided systems being built at the time of this writing, such as the long-term evolution (LTE) based fourth generation (4G) mobile communication system which allows for up to eight antenna elements at the base station (BS), the LS-MIMO system entails an unprecedented number of antennas, say 100 or more, at the BS. The huge leap in the number of BS antennas opens the door to a new research field in communication theory, propagation and electronics, where random matrix theory begins to play a dominant role. Interestingly, LS-MIMOs also constitute a perfect example of one of the key philosophical principles of the Hegelian Dialectics, namely, that “quantitative change leads to qualitative change.” In this treatise, we provide a recital on the historic heritages and novel challenges facing LS-MIMOs from a detection perspective. First, we highlight the fundamentals of MIMO detection, including the nature of co-channel interference (CCI), the generality of the MIMO detection problem, the received signal models of both linear memoryless MIMO channels and dispersive MIMO channels exhibiting memory, as well as the complex-valued versus real-valued MIMO system models. Then, an extensive review of the representative MIMO detection methods conceived during the past 50 years (1965–2015) is presented, and relevant insights as well as lessons are inferred for the sake of designing complexity-scalable MIMO detection algorithms that are potentially applicable to LS-MIMO systems. Furthermore, we divide the LS-MIMO systems into two types, and elaborate on the distinct detection strategies suitable for each of them. The type-I LS-MIMO corresponds to the case where the number of active users is much smaller than the number of BS antennas, which is currently the mainstream definition of LS-MIMO. The type-II LS-MIMO corresponds to the case where the number of active users is comparable to the number of BS antennas. Finally, we discuss the applicability of existing MIMO detection algorithms in LS-MIMO systems, and review some of the recent advances in LS-MIMO detection.

626 citations

Journal ArticleDOI
TL;DR: A comprehensive survey on UAV communication toward 5G/B5G wireless networks is presented and an exhaustive review of various 5G techniques based on Uav platforms is provided, which are categorize by different domains, including physical layer, network layer, and joint communication, computing, and caching.
Abstract: Providing ubiquitous connectivity to diverse device types is the key challenge for 5G and beyond 5G (B5G). Unmanned aerial vehicles (UAVs) are expected to be an important component of the upcoming wireless networks that can potentially facilitate wireless broadcast and support high rate transmissions. Compared to the communications with fixed infrastructure, UAV has salient attributes, such as flexible deployment, strong line-of-sight connection links, and additional design degrees of freedom with the controlled mobility. In this paper, a comprehensive survey on UAV communication toward 5G/B5G wireless networks is presented. We first briefly introduce essential background and the space–air–ground integrated networks, as well as discuss related research challenges faced by the emerging integrated network architecture. We then provide an exhaustive review of various 5G techniques based on UAV platforms, which we categorize by different domains, including physical layer, network layer, and joint communication, computing, and caching. In addition, a great number of open research problems are outlined and identified as possible future research directions.

624 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...In this context, mmWave communications [42] are emerging as a suitable candidate that can take advantage of a vast amount of unlicensed spectral resource at the mmWave frequency band (over 30–300 GHz) to deal with the high requirements for 5G wireless networks....

    [...]

Journal ArticleDOI
TL;DR: This tutorial explores the fundamental issues involved in selecting the best communications approaches for mmWave frequencies, and provides insights, challenges, and appropriate uses of each MIMO technique based on early knowledge of the mmWave propagation environment.
Abstract: The use of mmWave frequencies for wireless communications offers channel bandwidths far greater than previously available, while enabling dozens or even hundreds of antenna elements to be used at the user equipment, base stations, and access points. To date, MIMO techniques, such as spatial multiplexing, beamforming, and diversity, have been widely deployed in lower-frequency systems such as IEEE 802.11n/ac (wireless local area networks) and 3GPP LTE 4G cellphone standards. Given the tiny wavelengths associated with mmWave, coupled with differences in the propagation and antennas used, it is unclear how well spatial multiplexing with multiple streams will be suited to future mmWave mobile communications. This tutorial explores the fundamental issues involved in selecting the best communications approaches for mmWave frequencies, and provides insights, challenges, and appropriate uses of each MIMO technique based on early knowledge of the mmWave propagation environment.

613 citations


Cites background or methods from "Millimeter Wave Mobile Communicatio..."

  • ...Further details on the measurement equipment, procedures, and resulting measurements and models can be found in [3, 12, 13, 14, 15, 16]....

    [...]

  • ...The NYU WIRELESS research center has been studying wideband 28 and 73 GHz outdoor channels in both LOS and non-LOS (NLOS) environments in downtown New York City using an exhaustive search for possible propagation paths with steerable directional antennas as a way to study MIMO viability [3, 9, 13, 15, 16]....

    [...]

  • ...These measurements were conducted in 2012 using three discrete elevation pointing angles [3], rather than finding the strongest elevation angles as was done for the 73 GHz measurements in 2013 [16] given in Table 2....

    [...]

  • ...Although the gains along individual multipath components can change with small-scale motion (depending on the channel bandwidth or symbol time resolution [3]), the macro-level angular directions change at a much slower timescale....

    [...]

  • ...To understand how SM and BF will work at mmWave frequencies, propagation measurements are required, yet to date, there has been little work aimed at understanding mmWave wireless communication signals and propagation characteristics that incorporate MIMO, with the earliest studies reported in [1, 3, 16]....

    [...]

01 Jan 2014
TL;DR: This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM- MIMO.
Abstract: A key challenge of future mobile communication research is to strike an attractive compromise between wire- less network's area spectral efficiency and energy efficiency. This necessitates a clean-slate approach to wireless system design, embracing the rich body of existing knowledge, espe- cially on multiple-input-multiple-ouput (MIMO) technologies. This motivates the proposal of an emerging wireless commu- nications concept conceived for single-radio-frequency (RF) large-scale MIMO communications, which is termed as SM. The concept of SM has established itself as a beneficial transmission paradigm, subsuming numerous members of the MIMO system family. The research of SM has reached sufficient maturity to motivate its comparison to state-of-the-art MIMO communica- tions, as well as to inspire its application to other emerging wireless systems such as relay-aided, cooperative, small-cell, optical wireless, and power-efficient communications. Further- more, it has received sufficient research attention to be im- plemented in testbeds, and it holds the promise of stimulating further vigorous interdisciplinary research in the years to come. This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM-MIMO. The paper is concluded with the description of the world's first experimental activities in this vibrant research field.

583 citations


Cites background or methods from "Millimeter Wave Mobile Communicatio..."

  • ...Furthermore, these design and optimization problems have to be studied by considering realistic propagation channel models for the millimeter-wave frequency band, which may differ significantly from conventional channel models [46], [73]....

    [...]

  • ...7 employs the same space-time-coded transmission schemes as the LTE-A standard, but it requires a large number of TA elements and a fast RF switching mechanism, which are affordable requirements in the context of millimeter-wave communications [46], [47] (see Section VI-D for further details), and with the aid of currently-available RF technology [58]–[61]....

    [...]

  • ...ing elements) may be accommodated at the BSs (largescale MIMO design) [41], [42], especially in the emerging millimeter-wave band [43]–[46], bearing in mind that the complexity and power consumption/dissipation of MIMO communications are mainly determined by the number of simultaneously active TAs, i....

    [...]

  • ...Millimeter-wave communications is a promising technology for future cellular systems, especially for the wide availability of license-free spectrum [44], [46], [47]....

    [...]

  • ...This potential disadvantage may, however, be offset by the emerging large-scale MIMO and millimeterwave cellular communications paradigms [41]–[46], which foresee the future employment of compact...

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...Mm-wave frequencies, due to the much smaller wavelength, may exploit polarization and new spatial processing techniques, such as massive MIMO and adaptive beamforming [24]....

    [...]

  • ...Small cells offload traffic from base stations by overlaying a layer of small cell access points, which actually decreases the average distance between transmitters and users, resulting in lower propagation losses and higher data rates and energy efficiency [24]....

    [...]

  • ...Massive MIMO base stations allocate antenna arrays at existing macro base stations, which can accurately concentrate transmitted energy to the mobile users [24]....

    [...]

Journal ArticleDOI
TL;DR: Very large MIMO as mentioned in this paper is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation.
Abstract: This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.

2,717 citations

Journal ArticleDOI
Zhouyue Pi1, Farooq Khan1
TL;DR: This article introduces a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system and demonstrates the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment.
Abstract: Almost all mobile communication systems today use spectrum in the range of 300 MHz-3 GHz. In this article, we reason why the wireless community should start looking at the 3-300 GHz spectrum for mobile broadband applications. We discuss propagation and device technology challenges associated with this band as well as its unique advantages for mobile communication. We introduce a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system. We demonstrate the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment. A few key concepts in MMB network architecture such as the MMB base station grid, MMB interBS backhaul link, and a hybrid MMB + 4G system are described. We also discuss beamforming techniques and the frame structure of the MMB air interface.

2,487 citations


"Millimeter Wave Mobile Communicatio..." refers background in this paper

  • ...INTRODUCTION The rapid increase of mobile data growth and the use of smartphones are creating unprecedented challenges for wireless service providers to overcome a global bandwidth shortage [1], [2]....

    [...]

  • ...6 GHz radio spectrum bands for wireless communications [2]....

    [...]

  • ...With an evolution from fixed broadband to mobile broadband, more converged, personalized, convenient and seamless secure services will be achieved, and Samsung has recently made contributions in the area of mm-wave wireless [2], [12]....

    [...]

01 Jan 2012
TL;DR: This leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC.
Abstract: For cellular radio engineers and technicians. The leading book on wireless communications offers a wealth of practical information on the implementation realities of wireless communications. This book also contains up-to-date information on the major wireless communications standards from around the world. Covers every fundamental aspect of wireless communications, from cellular system design to networking, plus world-wide standards, including ETACS, GSM, and PDC. Theodore Rappaport is Series Editor for the Prentice Hall Communication, Engineering, and Emerging Technologies Series.

1,813 citations


"Millimeter Wave Mobile Communicatio..." refers background or methods in this paper

  • ...In order to achieve increased measurement dynamic range for increased coverage distance, we used a sliding correlator spread spectrum system [5]....

    [...]

  • ...Current 2G, 3G, 4G, & LTE-A spectrum and bandwidth allocations [5]....

    [...]