scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!

TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Citations
More filters
Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...This interference, so-called “pilot contamination,” does not vanish as the number of BS antennas grows large, and so is the one impairment that remains asymptotically....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: This survey makes an exhaustive review of wireless evolution toward 5G networks, including the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN, and underlying novel mm-wave physical layer technologies.
Abstract: The vision of next generation 5G wireless communications lies in providing very high data rates (typically of Gbps order), extremely low latency, manifold increase in base station capacity, and significant improvement in users’ perceived quality of service (QoS), compared to current 4G LTE networks. Ever increasing proliferation of smart devices, introduction of new emerging multimedia applications, together with an exponential rise in wireless data (multimedia) demand and usage is already creating a significant burden on existing cellular networks. 5G wireless systems, with improved data rates, capacity, latency, and QoS are expected to be the panacea of most of the current cellular networks’ problems. In this survey, we make an exhaustive review of wireless evolution toward 5G networks. We first discuss the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN. Subsequently, we make an in-depth survey of underlying novel mm-wave physical layer technologies, encompassing new channel model estimation, directional antenna design, beamforming algorithms, and massive MIMO technologies. Next, the details of MAC layer protocols and multiplexing schemes needed to efficiently support this new physical layer are discussed. We also look into the killer applications, considered as the major driving force behind 5G. In order to understand the improved user experience, we provide highlights of new QoS, QoE, and SON features associated with the 5G evolution. For alleviating the increased network energy consumption and operating expenditure, we make a detail review on energy awareness and cost efficiency. As understanding the current status of 5G implementation is important for its eventual commercialization, we also discuss relevant field trials, drive tests, and simulation experiments. Finally, we point out major existing research issues and identify possible future research directions.

2,624 citations


Cites background from "Millimeter Wave Mobile Communicatio..."

  • ...Rappaport and his group [28] propose site specific node layout for 5G radio network design....

    [...]

  • ...The propagation and penetration of mm-wave signal in outdoor environment is quite limited [28]....

    [...]

  • ...rials present high penetration resistance to mm-waves [28]....

    [...]

  • ...over Non Line of Sight (NLOS) communication [28], [30]....

    [...]

  • ...Technical understanding of channel behaviour presents new architectural techniques, different multiple access and novel methods of air interface [28]....

    [...]

Journal ArticleDOI
05 Feb 2014
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.

2,452 citations


Cites background or methods from "Millimeter Wave Mobile Communicatio..."

  • ...In both 28- and 73-GHz measurements, each point was classified as either being in a NLOS or LOS situation, based on a manual classification made at the time of the measurements; see [26] and [28]–[33]....

    [...]

  • ...• Empirical NYC: These curves are based on the omnidirectional path loss predicted by our linear model (1) for the mmW channel with the parameters from Table 1, as derived from the directional measurements in [26]....

    [...]

  • ...Details of the measurements can be found in [26], [28]– [33], [81]....

    [...]

  • ...This tremendous potential has led to considerable recent interest in mmW cellular both in industry [7]–[9], [18], [19] and academia [20]–[26], with a growing belief that mmW bands will play a significant role in beyond 4G and 5G cellular systems [27]....

    [...]

  • ...In particular, we survey our own measurements [26], [28]–[33] made in New York City (NYC) in both 28- and 73-GHz bands and the statistical models for the channels developed in [34]....

    [...]

Journal ArticleDOI
TL;DR: An adaptive algorithm to estimate the mmWave channel parameters that exploits the poor scattering nature of the channel is developed and a new hybrid analog/digital precoding algorithm is proposed that overcomes the hardware constraints on the analog-only beamforming, and approaches the performance of digital solutions.
Abstract: Millimeter wave (mmWave) cellular systems will enable gigabit-per-second data rates thanks to the large bandwidth available at mmWave frequencies. To realize sufficient link margin, mmWave systems will employ directional beamforming with large antenna arrays at both the transmitter and receiver. Due to the high cost and power consumption of gigasample mixed-signal devices, mmWave precoding will likely be divided among the analog and digital domains. The large number of antennas and the presence of analog beamforming requires the development of mmWave-specific channel estimation and precoding algorithms. This paper develops an adaptive algorithm to estimate the mmWave channel parameters that exploits the poor scattering nature of the channel. To enable the efficient operation of this algorithm, a novel hierarchical multi-resolution codebook is designed to construct training beamforming vectors with different beamwidths. For single-path channels, an upper bound on the estimation error probability using the proposed algorithm is derived, and some insights into the efficient allocation of the training power among the adaptive stages of the algorithm are obtained. The adaptive channel estimation algorithm is then extended to the multi-path case relying on the sparse nature of the channel. Using the estimated channel, this paper proposes a new hybrid analog/digital precoding algorithm that overcomes the hardware constraints on the analog-only beamforming, and approaches the performance of digital solutions. Simulation results show that the proposed low-complexity channel estimation algorithm achieves comparable precoding gains compared to exhaustive channel training algorithms. The results illustrate that the proposed channel estimation and precoding algorithms can approach the coverage probability achieved by perfect channel knowledge even in the presence of interference.

2,424 citations


Additional excerpts

  • ...Index Terms—Millimeter wave cellular systems, sparse channel estimation, adaptive compressed sensing, hybrid precoding....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Measure data and empirical models for 5.85-GHz radio propagation path loss in and around residential areas for the newly allocated National Information Infrastructure (NII) band in the U.S. will aid the development of futuristic outdoor-to-indoor wireless unlicensed NII systems and HIPERLAN systems.
Abstract: This letter contains measured data and empirical models for 5.85-GHz radio propagation path loss in and around residential areas for the newly allocated National Information Infrastructure (NII) band in the U.S. Three homes and two stands of trees were studied for outdoor path loss, tree loss, and house penetration loss in a narrow-band measurement campaign that included 270 local area path loss measurements and over 276000 instantaneous power measurements. The data will aid the development of futuristic outdoor-to-indoor wireless unlicensed NII systems (in the U.S.) and HIPERLAN systems (in Europe) for home Internet access, telecommunications, and wireless local loops.

33 citations


"Millimeter Wave Mobile Communicatio..." refers methods in this paper

  • ...In addition to penetration measurements for individual materials, penetration measurements were also made through multiple obstructions in typical office environments, to determine overall average partition losses, as was done in [29] using ‘‘primary ray tracing’’ where a single ray is drawn between the TX and RX, and attenuations of obstructions are determined through measurements....

    [...]

Proceedings ArticleDOI
09 Apr 2003
TL;DR: ETRI's 4G vision and enabling technologies to achieve this vision is described and the company is actively working to develop 4G high-tier system, HMM ( high-speed mobile Internet), and Hpi (high-speed portable Internet).
Abstract: With increasing end user demands for wider service due to the rapid growth and variety of IT (information technology) industry, the service with the data rate of 30 Mbps cannot accommodate the future mobile multimedia environment Therefore, worldwide radio and mobile communication institutes and companies started the R & D of 4G mobile communications system prior to completing the implementation of IMT-2000 system and providing its service ETRI is one of those organizations endeavoring for the future 4G system with capabilities beyond IMT-2000 With the establishment of R & D project for 4G radio transmission system in January of 2002, ETRI is actively working to develop 4G high-tier system, HMM (high-speed mobile Internet), and Hpi (high-speed portable Internet) In this paper, ETRI's 4G vision and enabling technologies to achieve this vision is described

11 citations


"Millimeter Wave Mobile Communicatio..." refers background in this paper

  • ...(MCRL) of ETRI initiated the R&D of the 4G radio transmission system for HSPA and proposed their vision of 4G radio mobile communications [14]....

    [...]

Proceedings ArticleDOI
31 Dec 2012
TL;DR: The proposed SIP extensions have been implemented on a SIP Application Server which functions as SDP in IP Multimedia Subsystem (IMS) and an Android SIP client application that acts as a device browser and recommender for different multimedia services to users.
Abstract: This paper proposes an extension to Session Initiation Protocol (SIP) for contextualized service delivery in a service delivery platform (SDP) that enables device specific multimedia delivery. SIP separates between session establishment and description and is thus, amenable to be extended for advanced implementations which make it an ideal platform for service creation. Device specific multimedia delivery needs rich and flexible device descriptions, and our approach proposes advanced device descriptions through semantic technologies. The proposed SIP extensions have been implemented on a SIP Application Server which functions as SDP in IP Multimedia Subsystem (IMS). The validation of the proposed extensions is shown through an Android SIP client application that acts as a device browser and recommender for different multimedia services to users. An example device user agent (UA) application has also been implemented on a laptop.

8 citations


"Millimeter Wave Mobile Communicatio..." refers background in this paper

  • ...The University of Surrey, England, has set up a world research hub for 5G mobile technology with a goal to expand UK telecommunication research and innovation [21]....

    [...]