scispace - formally typeset

Book

Mineral Nutrition of Higher Plants

01 Jan 1986-

AbstractNutritional Physiology: Introduction, Definition, and Classification of Mineral Nutrients. Ion Uptake Mechanisms of Individual Cells and Roots: Short Distance Transport. Long-Distance Transport in the Xylem and Phloem and its Regulation. Uptake and Release of Mineral Elements by Leaves and Other Aerial Plant Parts. Yield and the Source-Sink Relationships. Mineral Nutrition and Yield Response. Nitrogen Fixation. Functions of Mineral Nutrients: Macronutrients. Function of Mineral Nutrients: Micronutrients. Beneficial Mineral Elements. Relationship between Mineral Nutrition and Plant Diseases and Pests. Diagnosis of Deficiency and Toxicity of Mineral Nutrients. Plant-Soil Relationships: Nutrient Availability in Soils. Effect of Internal and External Factors on Root Growth and Development. The Soil-Root Interface (Rhizosphere) in Relation to Mineral Nutrition. Adaptation of Plants to Adverse Chemical Soil Conditions. References. Subject Index.

Topics: Nutrient (55%), Plant nutrition (54%)

...read more

Content maybe subject to copyright    Report

Citations
More filters

Journal ArticleDOI
TL;DR: This review restricts itself to bacteria that are derived from and exert this effect on the root and generally designated as PGPR (plant-growth-promoting rhizobacteria), which can be direct or indirect in their effects on plant growth.
Abstract: Several microbes promote plant growth, and many microbial products that stimulate plant growth have been marketed. In this review we restrict ourselves to bacteria that are derived from and exert this effect on the root. Such bacteria are generally designated as PGPR (plant-growth-promoting rhizobacteria). The beneficial effects of these rhizobacteria on plant growth can be direct or indirect. This review begins with describing the conditions under which bacteria live in the rhizosphere. To exert their beneficial effects, bacteria usually must colonize the root surface efficiently. Therefore, bacterial traits required for root colonization are subsequently described. Finally, several mechanisms by which microbes can act beneficially on plant growth are described. Examples of direct plant growth promotion that are discussed include (a) biofertilization, (b) stimulation of root growth, (c) rhizoremediation, and (d) plant stress control. Mechanisms of biological control by which rhizobacteria can promote plant growth indirectly, i.e., by reducing the level of disease, include antibiosis, induction of systemic resistance, and competition for nutrients and niches.

3,229 citations


Journal ArticleDOI
TL;DR: This paper provides an international methodological protocol aimed at standardising this research effort, based on consensus among a broad group of scientists in this field, and features a practical handbook with step-by-step recipes, for 28 functional traits recognised as critical for tackling large-scale ecological questions.
Abstract: There is growing recognition that classifying terrestrial plant species on the basis of their function (into 'functional types') rather than their higher taxonomic identity, is a promising way forward for tackling important ecological questions at the scale of ecosystems, landscapes or biomes. These questions include those on vegetation responses to and vegetation effects on, environmental changes (e.g. changes in climate, atmospheric chemistry, land use or other disturbances). There is also growing consensus about a shortlist of plant traits that should underlie such functional plant classifications, because they have strong predictive power of important ecosystem responses to environmental change and/or they themselves have strong impacts on ecosystem processes. The most favoured traits are those that are also relatively easy and inexpensive to measure for large numbers of plant species. Large international research efforts, promoted by the IGBP–GCTE Programme, are underway to screen predominant plant species in various ecosystems and biomes worldwide for such traits. This paper provides an international methodological protocol aimed at standardising this research effort, based on consensus among a broad group of scientists in this field. It features a practical handbook with step-by-step recipes, with relatively brief information about the ecological context, for 28 functional traits recognised as critical for tackling large-scale ecological questions.

2,905 citations


Journal ArticleDOI
TL;DR: This work suggests that equally important in a wide range of conditions are processes involving the management of Na(+) movements within the plant, and requires more knowledge of cell-specific transport processes and the consequences of manipulation of transporters and signalling elements in specific cell types.
Abstract: Tolerance to high soil [Na(+)] involves processes in many different parts of the plant, and is manifested in a wide range of specializations at disparate levels of organization, such as gross morphology, membrane transport, biochemistry and gene transcription. Multiple adaptations to high [Na(+)] operate concurrently within a particular plant, and mechanisms of tolerance show large taxonomic variation. These mechanisms can occur in all cells within the plant, or can occur in specific cell types, reflecting adaptations at two major levels of organization: those that confer tolerance to individual cells, and those that contribute to tolerance not of cells per se, but of the whole plant. Salt-tolerant cells can contribute to salt tolerance of plants; but we suggest that equally important in a wide range of conditions are processes involving the management of Na(+) movements within the plant. These require specific cell types in specific locations within the plant catalysing transport in a coordinated manner. For further understanding of whole plant tolerance, we require more knowledge of cell-specific transport processes and the consequences of manipulation of transporters and signalling elements in specific cell types.

2,756 citations


Journal ArticleDOI
TL;DR: A broad overview of the evidence for an involvement of each mechanism in heavy metal detoxification and tolerance is provided.
Abstract: Heavy metals such as Cu and Zn are essential for normal plant growth, although elevated concentrations of both essential and non-essential metals can result in growth inhibition and toxicity symptoms. Plants possess a range of potential cellular mechanisms that may be involved in the detoxification of heavy metals and thus tolerance to metal stress. These include roles for the following: for mycorrhiza and for binding to cell wall and extracellular exudates; for reduced uptake or efflux pumping of metals at the plasma membrane; for chelation of metals in the cytosol by peptides such as phytochelatins; for the repair of stress-damaged proteins; and for the compartmentation of metals in the vacuole by tonoplast-located transporters. This review provides a broad overview of the evidence for an involvement of each mechanism in heavy metal detoxification and tolerance.

2,524 citations


Book ChapterDOI
TL;DR: The issues of nutrient-limited plant growth and nutrient uptake, with special emphasis on the importance of the uptake of nutrients in organic form—both by mycorrhizal and by non-mycorrhIZal plants—and the influence of symbiotic nitrogen fixation are treated.
Abstract: Publisher Summary In this chapter, the advances that have been made in understanding the ecology of the mineral nutrition of wild plants from terrestrial ecosystems have been reviewed. This chapter is organized along three lines. First, the issues of nutrient-limited plant growth and nutrient uptake, with special emphasis on the importance of the uptake of nutrients in organic form—both by mycorrhizal and by non-mycorrhizal plants—and the importance of symbiotic nitrogen fixation is treated. In addition, the influence of allocation patterns on mineral nutrient uptake is described. Next, a few of the nutritional aspects of leaf functioning and how nutrients are used for biomass production by the plant are explored. That is done by studying the nutrient use efficiency (NUE) of plants and the various components of NUE. Finally, the feedback of plant species to soil nutrient availability by reviewing patterns in litter decomposition and nutrient mineralization is investigated. The chapter concludes with a synthesis of the various aspects of the mineral nutrition of wild plants. The chapter ends with a conceptual description of plant strategies with respect to mineral nutrition.

2,386 citations